www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

pag

Heart Failure Treatment in the Era of Multiple Therapies: A Potpourri

lleana L. Piña, MD, MPH, FAHA, FACC, FHFSA Professor Medicine, Thomas Jefferson University Clinical Professor of Medicine Central Michigan University Adjunct Professor of Epi/Biostats, Case Western Reserve University Senior Staff Fellow for FDA, CDRH, Medical Officer

The Landscape of Heart Failure

- Complex
- Hospitalizations are frequent
- Costs are high
- CMS rule penalties
- Patients are becoming more challenging
- Team effort

Where Have Our Old Targets Been?

- Sympathetic nervous system
- Angiotensin-converting enzyme
- Aldosterone
- Angiotensin II receptor blocker
- Vasopressin
- Endothelin
- Sodium and water retention
- Loss of contractility

Treatment of HFrEF Stages C and D

American Heart Association.

Heidenreich, P. A. et al. (2022). 2022 AHA/ACC/HFSA Guideline for Heart Failure. Circulation.

implantable cardioverter-defibrillator; LBBB, left bundle branch block; LVEF, left ventricular ejection fraction; MCS, mechanical circulatory support; MRA, mineralocorticoid receptor

antagonist; NSR, normal sinus rhythm; NYHA, New York Heart Association; SCD, sudden cardiac death; and SGLT2i, sodium-glucose cotransporter 2 inhibitor.

Treatment of HFrEF Stages C and D

Heidenreich, P. A. et al. (2022). 2022 AHA/ACC/HFSA Guideline for Heart Failure. Circulation.

4 "Pillars" of Foundational Therapy for Optimal Management of HFrEF

McDonagh et al EHJ 2021

PARADIGM-HF: Study Design

McMurray JJV, et al, for the PARADIGM-HF Investigators and Committees. N Engl J Med. 2013;371(11):993-1004.

PARADIGM-HF: Baseline Characteristics

	LCZ696 (n=4187)	Enalapril (n=4212)
Age (years)	63.8 ± 11.5	63.8 ± 11.3
Women (%)	21.0%	22.6%
Ischemic cardiomyopathy (%)	59.9%	60.1%
LV ejection fraction (%)	29.6 ± 6.1	29.4 ± 6.3
NYHA functional class II / III (%)	71.6% / 23.1%	69.4% / 24.9%
Systolic blood pressure (mm Hg)	122 ± 15	121 ± 15
Heart rate (beats/min)	72 ± 12	73 ± 12
N-terminal pro-BNP (pg/mL)	1631 (885-3154)	1594 (886-3305)
B-type natriuretic peptide (pg/mL)	255 (155-474)	251 (153-465)
History of diabetes	35%	35%
Digitalis	29.3%	31.2%
Beta-adrenergic blockers	93.1%	92.9%
Mineralocorticoid antagonists	54.2%	57.0%
ICD and/or CRT	16.5%	16.3%

McMurray JJV, et al, for the PARADIGM-HF Investigators and Committees. N Engl J Med. 2013;371(11):993-1004.

PARADISE-MI

#ACC21

Trial Description: Patients with acute myocardial infarction (AMI) presentation and newly diagnosed LVEF \leq 40% were randomized in a 1:1 fashion to either sacubitril/valsartan (target dose 97/103 mg BID) or ramipril (target dose 5 mg BID). Patients were followed for a median of 23 months.

RESULTS

- Primary endpoint of CV death, first HF hospitalization, or outpatient HF event for sacubitril/valsartan versus ramipril: 11.9% vs 13.2% (P=.17)
- CV death: 5.9% vs 6.7% (*P*=.20)
- HF hospitalization: 6% vs 6.9% (*P*= .17)
- All-cause mortality: 7.5% vs 8.5% (P= .16)
- Total HF hospitalization, outpatient HF events, and CV mortality: 8.4 vs 10.1/100 patient-years (*P*= .02)

CONCLUSIONS

- Combination sacubitril/valsartan did not reduce the primary endpoint in a contemporary enriched AMI population versus ramipril
- Rates were numerically lower in the sacubitril/valsartan arm, and composite endpoint including all HF events showed benefit with sacubitril/valsartan

Presented by Dr. Marc Pfeffer at ACC.21

Developed by Dr. Neil Keshvani in collaboration with the ACC.org Editorial Board

LIFE

#ACC21

Trial Description: Patients with advanced HFrEF were randomized in a 1:1 fashion to either sacubitril/valsartan or valsartan. Patients were followed for 24 weeks.

RESULTS

- Primary endpoint, area under the curve for the proportional change in the ratio of NT-proBNP to baseline, for sacubitril/valsartan versus valsartan: *P*=.45
- Days alive, out of hospital, or free from HF events: 103.2 vs 111.2 days (P=.45)
- CV death or hospitalization for HF: HR 1.32, 95% CI 0.86-2.03 (*P*=.20)
- Hypotension: 17% vs 12% (*P*=.16); hyperkalemia: 17% vs 9% (*P*=.035)

CONCLUSIONS

- Sacubitril/valsartan did not reduce NT-proBNP or clinical outcomes among patients with advanced HFrEF and comorbidities
- Hyperkalemia was higher with sacubitril/valsartan

CMHC Cardiometabolic Health Congress

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Heart Failure: Challenges with GDMT Optimization

lleana L. Piña, MD, MPH, FAHA, FACC, FHFSA Professor Medicine, Thomas Jefferson University Clinical Professor of Medicine Central Michigan University Adjunct Professor of Epi/Biostats, Case Western Reserve University Senior Staff Fellow for FDA, CDRH, Medical Officer

However, ~80% of Patients With Chronic HF Are Either not on Target Dose, or RAASi Therapy Has Been Down Titrated or Discontinued

The CHAMP-HF registry of 2588 US outpatients with chronic HFrEF receiving ≥ 1 oral medication At baseline 658 (25%), 525 (20%), 287 (11%), and 45 (2%) pts were receiving target doses of MRA, Beta-Blocker, ACEI/ARB, and ARNi therapy, respectively

Dose of Medication at 12-Month Follow-up Compared With Baseline

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor neprilysin inhibitor; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor antagonist; RAASi, renin–angiotensin–aldosterone system inhibitor Greene SJ, et al. J Am Coll Cardiol. 2019;73(19):2365-2383. Open Access.

Barriers to Prescribing GDMT

GDMT, guideline-directed medical therapy.

Withdrawal of ACEi/ARB During Heart Failure Hospitalization Is Associated With Higher Rates of Post-discharge Re-admission and Mortality

(mortality or re-aumission	i), stratilieu D	Y ACEI/ARD US	e
	ACEi contraindication	N=6	5753	
1-year re-admiss	Hypotension / risk for cardiogenic shock	588	8.71%	r mortality or re-admission
^{1.0} Discontinued Not started	Azotaemia	1589	23.53%	Discontinued Not started
5 0.8 Started Continued	Other	4023	59.57%	Started Continued
-6.0 I	Patient reason	796	11.79%	
-4.0 B	System reason	58	0.86%	
	ARB contraindication	N=6	5739	
3 0.2 0.0-	Hypotension / risk for cardiogenic shock	587	8.71%	
0 90 180 2 Days after discharge	Azotaemia	1610	23.89%	90 180 270 360 Days after discharge
	Other	3983	59.10%	
	Patient reason	765	11.35%	
	System reason	56	0.83%	

Incidence rates of Dogunaenteakination,for AGE in AREa lion train digetions mposite endpoint (mortality or re-admission), stratified by ACEi/ARB use

Gilstrap LG, et al. J Am Heart Assoc. 2017;6:e004675. Open Access.

CMHC Cardiometabolic Health Congress

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

New Targets & Trials In HF: An Overview

Ileana L. Piña, MD, MPH, FAHA, FACC, FHFSA Professor Medicine, Thomas Jefferson University Clinical Professor of Medicine Central Michigan University Adjunct Professor of Epi/Biostats, Case Western Reserve University Senior Staff Fellow for FDA, CDRH, Medical Officer

New Targets / Trials

(looking at the syndrome from different angles)

New vasodilators /GMPc modulators

Synthetic natriuretic peptides

Sinus node inhibition for heart rate reduction

NEP inhibitors (+ ARB) (ARNI)

Binders of actin-myosin

Novel nonsteroidal MRAs

Refinement of therapy, biomarkers, remodelling

A Plethora of Choices...

Therapies With Effects on B-Type Natriuretic Peptide Levels

Therapy	Effect on BNP/NT-proBNP
Diuresis	\downarrow
ACEi/ARB	\downarrow
β blockers	\downarrow
Aldosterone antagonists	\downarrow
Biventricular pacing	\downarrow
Exercise	\downarrow
Rate control of atrial fibrillation	\downarrow
Natriuretic peptide infusions	\downarrow
Serelaxin	\downarrow
Valsartan/sacubitril	↓ NT-proBNP, ↑ BNP
Neuregulin	\uparrow

JAMA | Original Investigation

Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide Following Initiation of Sacubitril-Valsartan Treatment With Cardiac Structure and Function in Patients With Heart Failure With Reduced Ejection Fraction

James L. Januzzi Jr, MD; Margaret F. Prescott, PhD; Javed Butler, MD, MPH, MBA; G. Michael Felker, MD, MHS; Alan S. Maisel, MD; Kevin McCague, MA; Alexander Camacho, PhD; Ileana L. Piña, MD, MPH; Ricardo A. Rocha, MD; Amil M. Shah, MD, MPH; Kristin M. Williamson, PharmD; Scott D. Solomon, MD; for the PROVE-HF Investigators

Change From Baseline in Log-Transformed NT-proBNP, pg/ml

Concentrations of N-Terminal Pro–B-Type Natriuretic Peptide (NT-proBNP) Across Study VisitsReduction in NT-proBNP was evident by the first follow-up visit and was sustained throughout the 12 months. Concentrations of NT-proBNP were included if collected 6 or more hours from the first dose of sacubitril-valsartan. Distributions of NT-proBNP at each time point can be found in eTable 2 and eFigure 3 in Supplement 3.

Januzzi JL Jr, et al. JAMA. 2019;322(11):1085-1095. Open Access.

Circulation: Heart Failure

ORIGINAL ARTICLE

6

Racial and Ethnic Differences in Biomarkers, Health Status, and Cardiac Remodeling in Patients With Heart Failure With Reduced Ejection Fraction Treated With Sacubitril/ Valsartan

Nasrien E. Ibrahim, MD; Ileana L. Piña, MD, MPH; Alexander Camacho[®], PhD; Devavrat Bapat, MS; G. Michael Felker[®], MD, MHS; Alan S. Maisel, MD; Javed Butler, MD, MPH, MBA; Margaret F. Prescott, PhD; Cheryl A. Abbas, PharmD; Scott D. Solomon, MD; James L. Januzzi[®], Jr, MD; on behalf of the Prospective Study of Biomarkers, Symptom Improvement and Ventricular Remodeling During Entresto Therapy for Heart Failure (PROVE-HF) Study Investigators

Consistent across race/ ethnicity

CMHC Cardiometabolic Health Congress

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Cardiac Myosin Activators in HFrEF

Ileana L. Piña, MD, MPH, FAHA, FACC, FHFSA Professor Medicine, Thomas Jefferson University Clinical Professor of Medicine Central Michigan University Adjunct Professor of Epi/Biostats, Case Western Reserve University Senior Staff Fellow for FDA, CDRH, Medical Officer

A Plethora of Choices...

ATOMIC-AHF: Omecamtiv Mecarbil (OM) Is a Novel Selective Cardiac Myosin Activator

Omecamtiv mecarbil increases the entry rate of myosin into the tightly bound, force-producing state with actin "More hands pulling on the rope"

Increases duration of systole

Increases stroke volume

No increase in myocyte calcium

No change in dP/dt_{max}

No increase in MVO₂

dP/dt_{max}, peak positive derivatives of LV pressure; MVO₂, myocardial oxygen consumption. Malik FI, et al. *Science*. 2011;331(6023):1439-1443. Teerlink JR, et al. *J Am Coll Cardiol*. 2016;67(12):1444-1455. Open Access.

Primary Composite Outcome: HF Event or CV Death

Teerlink JR, et al. N Engl J Med. 2021;384(2):105-116.

Primary Composite Outcome, According to Prespecified Subgroup

Subgroup	Hazard Rat	io (95% CI)
Overall	⊢ ∎-1	0.92 (0.86-0.99)
Randomization setting	• 115 and 104	
Inpatient	⊢ ∎–↓	0.89 (0.78-1.01)
Outpatient	⊢ ∎-	0.94 (0.86-1.02)
Region		
Asia	B	0.80 (0.61-1.05)
Eastern Europe or Russia	- 	0.90 (0.80-1.02)
Latin America	► ■ • • •	0.90 (0.75-1.07)
United States and Canada		0.85 (0.73-0.99)
W. Europe, South Africa, or Australi	a	1.07 (0.93-1.23)
Age		
<65	} 	0.91 (0.82-1.02)
≥65	⊢ ∎∔I	0.94 (0.86-1.03)
Sex	• · · · · · · · · · · · · · · · · · · ·	
Female	⊢_ ∎ 	0.95 (0.81-1.12)
Male	- -	0.92 (0.85-0.99)
Baseline weight		
≤68.4 kg	⊢_ ∎(0.88 (0.77-1.02)
>68.4 to ≤80.0 kg		0.99 (0.86-1.15)
>80.0 to ≤93.9 kg	∎	0.85 (0.74-0.99)
>93.9 kg	⊢	0.98 (0.85-1.12)
Race		
Asian		0.79 (0.61-1.02)
Black	F	0.82 (0.64-1.04)
White	⊢∎∔	0.95 (0.88-1.03)
Other	⊢	0.91 (0.69-1.21)
Ethnic group	No	
Hispanic or Latino	⊢ = + 1	0.90 (0.76-1.06)
Not Hispanic or Latino	⊢ ∎-1	0.93 (0.86-1.00)
NYHA class		
П	⊢ ∎–1	0.97 (0.87-1.08)
III or IV	- - ∎	0.88 (0.80-0.97)
Diabetes		
No	- - 1	0.91 (0.83-1.01)
Yes	⊢∎∔	0.93 (0.84-1.03)
Primary cause of HF		
Ischemic	⊢ ∎-	0.90 (0.82-0.98)
Nonischemic	<u>├──</u> ■┼─┤	0.96 (0.86-1.07)
History of myocardial infarction		
No	⊢ ∎∔I	0.93 (0.85-1.03)
Yes	⊢ ∎	0.91 (0.83-1.01)
0.5	0.7 0.9 1.0 1.1 1.3	1.5 1.7
Om	Better Better	0

No	⊢ ∎-1	0.91 (0.84-0.99)
Yes ARN inhibitor	⊢∎-I	0.91 (0.83-0.98)
MRA therapy No		0.98 (0.85-1.12)
ARB therapy No Yes		0.91 (0.85–0.99) 0.97 (0.83–1.15)
ACE inhibitor therapy No Yes	├─ ─ ┤ ├─ ─ ┤	0.94 (0.85-1.03) 0.90 (0.81-1.00)
eGFR ≤60 ml/min/1.73 m ² >60 ml/min/1.73 m ²		0.98 (0.89–1.07) 0.84 (0.75–0.94)
<100 mm Hg ≥100 mm Hg	├ <u>-</u> ∎_┤ ├■_┤	0.89 (0.76-1.05) 0.92 (0.86-1.00)
Systolic BP distribution ≤Median (116 mm Hg) >Median (116 mm Hg)		0.90 (0.82-0.99) 0.95 (0.85-1.05)
Heart rate ≤Median (71 bpm) >Median (71 bpm)	⊢ ∎ -1 ⊢ ≡ -1	0.91 (0.82–1.01) 0.93 (0.85–1.03)
Inpatient + ≤median Inpatient + >median Outpatient + ≤median Outpatient + >median		0.97 (0.74–1.28) 0.75 (0.61–0.92) 0.88 (0.73–1.05) 0.85 (0.75–0.97)
LVEF ≤Median (28%) >Median (28%)	⊢∎-1 ⊢∎-1	0.84 (0.77–0.92) 1.04 (0.94–1.16)
Atrial fibrillation or flutter No Yes	⊢ ∎⊣	0.86 (0.79–0.94) 1.05 (0.93–1.18)

Scientific Sessions

Primary Outcome: Subgroup Results

10

GALACTIC-HF

CMHC Cardiometabolic Health Congress

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

sGC Stimulators in HFrEF

Ileana L. Piña, MD, MPH, FAHA, FACC, FHFSA Professor Medicine, Thomas Jefferson University Clinical Professor of Medicine Central Michigan University Adjunct Professor of Epi/Biostats, Case Western Reserve University Senior Staff Fellow for FDA, CDRH, Medical Officer

A plethora of choices...

Vericiguat Increases sGC Activity to Improve Myocardial and Vascular Function

Heart Fail Rev 2013;18:123-124; Braunwald's Heart Disease 2015; Handb Exp Pharmacol. 2017;243:225-247; Heart Failure: A Companion to Braunwald's Heart Disease 2020; EMJ Cardiol. 2020;8[1]:26-33

Results From the VICTORIA Trial: Primary Endpoint and Components

Annual NNT for the composite endpoint of CV death or first HFH = $24^{\#}$

*The primary endpoint was a composite of death from CV causes or first HFH; #annual NNT: 100/4.2 = 24

ARR, absolute risk reduction; CI, confidence interval; CV, cardiovascular; HF, heart failure; HFH, heart failure hospitalisation; HR, hazard ratio; NNT, number needed to treat

1. Armstrong PW et al. N Engl J Med. 2020;382:1883–1893; 2. Butler J et al. Circulation. 2020; doi: 10.1161/CIRCULATIONAHA.120.047086 Courtesy of Dr Javed Butler.

Cardiovascular Death

First HF Hospitalization

Baseline NP Level And Effect Of Vericiguat In VICTORIA

Subgroup	Vericiguat	Placebo	Hazard Ratio (95% CI)	
	no. of	events		
NT-proBNP level				
Quartile 1 (≤1556.0 pg/ml)	128	161	⊢ →	0.78 (0.62–0.99)
Quartile 2 (>1556.0 to ≤2816.0 pg/ml)	165	201		0.73 (0.60-0.90)
Quartile 3 (>2816.0 to ≤5314.0 pg/ml)	213	257	⊢ ♦ – • (0.82 (0.69–0.99)
Quartile 4 (>5314.0 pg/ml)	355	302	i —◆—1	1.16 (0.99–1.35)

~ 1250 pts per group

1. Armstrong PW et al. *N Engl J Med*. 2020;382:1883–1893. Courtesy of Dr Javed Butler.

Annualized event rate in recent HFrEF Trials

(events per 100 patient-years at risk) High event rate in VICTORIA

	PARAD	IGM-HF	DAP	A-HF	EMPERO	R-Reduced	GALAC	TIC-HF	VICT	ORIA
	Comparator	Sacubitril/ Valsartan	Comparator	Dapagliflozin	Comparator	Empagliflozin	Comparator	Omecamtiv Mecarbil	Comparator	Vericiguat
Primary endpoint	13.2	10.5	15.6	11.6	21.0	15.8	26.3	24.2	37.8	33.6
Absolute rate reduction	2	.7	4	.0	5	5.2	2	.1	4	.2
CV death	7.5	6.0	7.9	6.5	8.1	7.6	10.8	10.9	13.9	12.9
Absolute rate reduction	1	.5	1	.4	C).6	-0).1	1	.0
First HF hospitalisati on	NR	NR	9.8	6.9	15.5	10.7	19.1	18.0	29.1	25.9
Absolute rate reduction	1	.6	2	.9	4	l.8	1	.1	3	.2

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

ardiometabolic

Health

Certified Cardiometabolic Health Professional (CCHP)

SGLT-2 Inhibitors in HFrEF

Ileana L. Piña, MD, MPH, FAHA, FACC, FHFSA Professor Medicine, Thomas Jefferson University Clinical Professor of Medicine Central Michigan University Adjunct Professor of Epi/Biostats, Case Western Reserve University Senior Staff Fellow for FDA, CDRH, Medical Officer

A Plethora of Choices...

EMPA-REG OUTCOME

7020 Patients With T2DM + High CV Risk

CV Death, MI, Stroke

Hospitalization for HF (HHF)

MI, myocardial infarction.

Zinman B, et al. N Engl J Med. 2015;373(22):2117-2128.

Meta-analysis of SGLT2 Inhibitor CVOTs Evaluating CV Benefit in Patients With and Without HF

ndpoint S	Subarou	o Trial	Events per 1000) patient-year Placebo	5	HR (95% CI)	<i>P-v</i> alue	
HHF/	HF	EMPA-REG OUTCOME CANVAS Program DECLARE-TIMI 58 Pooled Estimate	63.6 35.4 45.1	85.5 56.8 55.5		0.72 (0.50-1.04) 0.61 (0.46-0.80) 0.79 (0.63-0.99) 0.71 (0.61-0.84)	< 0.0001	_
V Death	No history of HF	EMPA-REG CANVAS Program DECLARE-TIMI 58 Pooled Estimate	15.5 13.6 8.9	24.9 15.2 10.5		0.63 (0.51-0.78) 0.87 (0.72-1.06) 0.84 (0.72-0.99) 0.79 (0.71-0.88)	<0.0001	P <u>Im</u>
	HF	EMPA-REG OUTCOME CANVAS Program DECLARE-TIMI 58	6.3 6.4 4.7	11.5 10.5 8.6		0.54 (0.40-0.75) 0.59 (0.44-0.79) 0.55 (0.41-0.75)		_
HHF	No	Pooled Estimate CANVAS Program DECLARE-TIMI 58	4.1 3.0	6.6 5.9		0.56 (0.47-0.67) 0.63 (0.39-1.02) 0.51 (0.37-0.69)	<0.0001	P-I Ini
	of HF	Pooled Estimate				0.54 (0.42-0.71)	<0.0001	

Meta-analysis of SGLT2i Trials on Renal Endpoint Stratified by Drug Class

DAPA-HF: Primary Outcome

Median follow-up: 18.2 months	HR or RR or Difference (95% CI)
Primary Composite Outcome	0.74 (0.65 to 0.85) <i>P</i> <0.001
Hospitalization or an urgent HF visit	0.70 (0.59 to 0.83)
HHF	0.70 (0.59 to 0.83)
Urgent HF visit	0.43 (0.20 to 0.90)
CV death	0.82 (0.69 to 0.98)

Primary Composite Outcome

Months since Randomization

DAPA-HF: Components of Primary Outcome

HHF **CV Death** 30-Hazard ratio, 0.70 (95% CI, 0.59-0.83) 30-Hazard ratio, 0.82 (95% CI, 0.69-0.98) 25-**Cumulative Incidence Cumulative Incidence** 25-20-20-15-15 -10-10-5-5-U 24 18 21 24 18 21 q 2 5 0 9 2 15 0 6 **Months since Randomization Months since Randomization**

Emperor-Reduced: Slope of Decline in Glomerular Filtration Rate — Hierarchical Endpoint #3

In 966 patients, eGFR was reassessed at the end of the trial 23-42 days after the withdrawal of double-blind therapy, thus allowing unconfounded assessment of the effects of treatment. Over 16 months, eGFR deteriorated by:

> - 4.2 ml/min/1.73 m² on placebo

- 0.9 m/min/1.73 m² on empagliflozin

P<.0001

SGLT2 inhibitors in patients with chronic HFrEF Consistency of findings. DAPA-HF EMPEROR-Reduced

Outcome similar with or without comorbid diabetes

McMurray N Engl J Med. 2019;318:1995-2008

Packer M et al N Engl J Med. 2020 Aug 29.

Direct and Indirect Actions of SGLT2 Inhibitors^{1–5}

ATP, adenosine triphosphate; CRM, cardiovascular, renal and metabolic; eGFR, estimated glomerular filtration rate; RAAS, renin-angiotensin-aldosterone system; SNS, sympathetic nervous system. 1. Givens RC, Schulze PC. Molecular changes in heart failure. In: Eisen H, ed. Heart Failure: A Comprehensive Guide to Pathophysiology and Clinical Care. London: Springer Verlag; 2017:1–26. 2. Ronco C et al., *J Am Coll Cardiol.* 2008;52:1527. 3. Santos-Ferreira D, et al. *Cardiology*. 2020;145:311–20. 4. Cowie M, Fisher M. *Nat Rev Cardiol.* 2020;17:761–72. 5. Scheen AJ. *Nat Rev Endocrinol.* 2020;16:556–77.

The Story Is Unfolding: SGLT2 Inhibitors

Treatment of HFrEF Stages C and D

Heart

Association.

Recommendations for Patients with Mildly Reduced LVEF

Patients With HFimpEF

Abbreviations: ARB indicates angiotensin receptor blocker; ARNi, angiotensin receptor-neprilysin inhibitor; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; LV, left ventricle; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; and SGLT2i, sodium-glucose cotransporter-2 inhibitor.

CMHC Cardiometabolic Health Congress

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(A)

Heart Failure with Preserved Ejection Fraction (HFpEF): Challenges and Treatment Advances

Ileana L. Piña, MD, MPH, FAHA, FACC, FHFSA Professor Medicine, Thomas Jefferson University Clinical Professor of Medicine Central Michigan University Adjunct Professor of Epi/Biostats, Case Western Reserve University Senior Staff Fellow for FDA, CDRH, Medical Officer

HFpEF: The Real Unmet Need

- LV diastolic dysfunction is defined as impaired LV filling at normal left atrial pressure
- Most rapidly growing type of HF
- More common in elderly patients, women
- Responsible for up to >40% of HF in adults
- Many patients have both LV systolic and diastolic dysfunction
- Definitions continue to evolve

Seeing HFpEF Through Comorbidities

Mentz R, et al. J Cardiac Fail. 2016;22(7):545-547.

Recommendations for Patients with Preserved LVEF

NOTE: *Greater benefit in patients with LVEF closer to 50%

Abbreviations: ACEi indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor-neprilysin inhibitor; HFimpEF, heart failure with improved ejection fraction; HFmrEF, heart failure with mildly reduced ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; and SGLT2i, sodium- glucose cotransporter 2

Heidenreich, P. A. et al. (2022). 2022 AHA/ACC/HFSA Guideline for Heart Failure. Circulation.

PARAGON-HF Primary Results

Recurrent event analysis of total HF hospitalizations and CV death*

Treatment Effect By Ejection Fraction Quartiles

Primary Composite Total HF Hospitalizations and CV Death

EMPEROR PRESERVED

Demographics and baseline characteristics

	Empagliflozin (n=2997)	Placebo (n=2991)
Age (yr)	71.8 ± 9.3	71.9 ± 9.6
Women (%)	1338 (45)	1338 (45)
Diabetes mellitus (%)	1466 (49)	1472 (49)
Ischaemic HF (%)	1079 (36)	1038 (35)
NYHA functional class II (%)	2432 (81)	2451 (82)
LV ejection fraction (%)	54.3 ± 8.8	54.3 ± 8.8
NT-proBNP (median, IQR), pg/mL	994 (501, 1740)	946 (498, 1725)
Atrial fibrillation	1543 (52)	1514 (51)
Glomerular filtration rate (mL/min/1.73 m ²)	60.6 ± 19.8 (50% <60)	60.6 ±19.9 (50% <60)
Co-medications of interest		
RAASi ± ARNI	2428 (81)	2404 (80)
MRA	1119 (37)	1125 (38)
Beta blocker	2598 (87)	2569 (86)
Statins	2042 (68)	2089 (70)

EMPEROR-Preserved: Empagliflozin in Chronic HFpEF

Population: 5988 patients with structural heart disease or HFH within 12 months of screening, T2DM & non-T2DM, chronic HF (NYHA class II–IV), eGFR≥20 Aim: to evaluate efficacy and safety of empagliflozin versus placebo, on top of standard of care, in **patients with HFpEF** with or without diabetes

Primary endpoint: **Time to first** event of adjudicated CV death or HF hospitalization

Anker et al. *N Engl J Med*. 2021;385:1451-61

Primary endpoint: individual components

	Empaglif (n=299	lozin 97)	Placeb (n=299	o 1)	Hazard ratio	Р
	Number of events (%)	Events/100 patient-yrs	Number of events (%)	Events/100 patient-yrs	(95% CI)	value
Primary composite outcome	415 (13.8%)	6.9	511 (17.1%)	8.7	0.79 (0.69 – 0.90)	0.0003
First hospitalization for heart failure	259 (8.6%)	4.3	352 (11.8%)	6.0	0.71 (0.60 – 0.83)	
Cardiovascular death	219 (7.3%)	3.4	244 (8.2%)	3.8	0.91 (0.76 – 1.09)	

Anker, Stefan D., et al. England Journal of Medicine 385.16 (2021): 1451-1461.

Primary endpoint: Subgroup analysis (1 of 2)

	Empagliflozin	Placebo		
·	n with event/	N analysed	HR (95% CI)	HR (95% CI)
Overall	415/2997	511/2991	⊢● −1	0.79 (0.69–0.90)
Baseline diabetes status				
Diabetes	239/1466	291/1472	⊢_	0.79 (0.67–0.94)
No diabetes	176/1531	220/1519	⊢	0.78 (0.64–0.95)
Age, years				
<70	134/1066	152/1084	⊢	0.88 (0.70–1.11)
≥70	281/1931	359/1907	⊢	0.75 (0.64–0.87)
Sex				
Male	253/1659	297/1653	⊢	0.81 (0.69–0.96)
Female	162/1338	214/1338	⊢	0.75 (0.61–0.92)
Race				
White	310/2286	370/2256	⊢	0.81 (0.69–0.94)
Black	24/133	28/125	↓I	0.73 (0.42–1.25)
Asian	54/413	77/411	⊢−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	0.65 (0.46–0.92)
Other	27/164	36/198	FI	0.95 (0.58–1.57)
Baseline body-mass index				
<30 kg/m ²	223/1654	292/1642	⊢	0.74 (0.62–0.88)
≥30 kg/m²	192/1343	219/1349	⊢	0.85 (0.70–1.03)
Baseline eGFR (CKD-EPI)				
≥60 mL/min/1.73 m²	152/1493	189/1505	⊢ ●	0.81 (0.65–1.00)
		004/4404		0.79 (0.66, 0.01)

Anker, Stefan D., et al. England Journal of Medicine 385.16 (2021): 1451-1461.

Primary endpoint: Subgroup analysis (2 of 2)

	Empagliflozin	Placebo		
	n with event/N analysed		- HR (95% CI)	HR (95% CI)
Overall	415/2997	511/2991	⊢ ● ⊣	0.79 (0.69–0.90)
HF hospitalization in ≤12 r	months			
No	258/2298	319/2321		0.81 (0.68–0.95)
Yes	192/670	150/539	⊢	0.73 (0.59–0.90)
Cause of HF				
Ischaemic	157/1079	177/1038	⊢	0.85 (0.69–1.06)
Non-ischaemic	258/1917	334/1953	⊢ ,	0.75 (0.64–0.89)
Baseline NYHA class*				
II	275/2435	361/2452	⊢ ,	0.75 (0.64–0.87)
III/IV	140/562	150/539	⊢	0.86 (0.68–1.09)
Baseline LVEF				
<50%	145/995	193/988	⊢	0.71 (0.57–0.88)
≥50% to <60%	138/1028	173/1030	⊢	0.80 (0.64–0.99)
≥60%	132/974	145/973	⊢	0.87 (0.69–1.10)
Baseline NT-proBNP (calc	ulated by AF/flutter status)			
<median< td=""><td>126/1477</td><td>168/1508</td><td>►</td><td>0.76 (0.61–0.96)</td></median<>	126/1477	168/1508	►	0.76 (0.61–0.96)
≥Median	288/1516	341/1476	⊢ ●(0.78 (0.67–0.91)
Baseline use of MRA				
No	233/1878	306/1866	⊢ ●−−1	0.73 (0.62–0.87)
Yes	182/1119	205/1125	⊢_ ●+	0.87 (0.71–1.06)
Baseline use of ACE-inhib	oitor, ARB or ARNI			
No	90/569	121/587	⊢	0.75 (0.57–0.99)
Yes	325/2428	390/2404		0.80 (0.69–0.93)
			0.25 0.5 1	2
NYHA class I are counted i	n class II		Empagliflozin better Placebo bett	► er

Anker, Stefan D., et al. England Journal of Medicine 385.16 (2021): 1451-1461.

Primary Endpoint: CV Death or Worsening HF Full Population

Components of Primary Endpoint

Full Population

Cardiovascular Death

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

pag

Treatment of HF: Summary and Concluding Remarks

Ileana L. Piña, MD, MPH, FAHA, FACC, FHFSA Professor Medicine, Thomas Jefferson University Clinical Professor of Medicine Central Michigan University Adjunct Professor of Epi/Biostats, Case Western Reserve University Senior Staff Fellow for FDA, CDRH, Medical Officer

2023 Classifications of HF According to Ejection Fraction (EF)

Normal:

• LVEF >55%

HF with reduced EF (HFrEF):

- HF with LVEF $\leq 40\%$
- HF with mildly reduced EF (HFmrEF):
- HF with LVEF 41–49%

HF with preserved EF (HFpEF):

• HF with LVEF \geq 50%

HF with improved EF (HFimpEF):

• HF with a baseline LVEF ≤40%, a ≥10 point increase from baseline LVEF, and a second measurement of LVEF >40%

Image Source: Jessup M, Brozena SA. N Engl J Med. 2003;348:2007-2018:

Specific Treatment of Comorbidities: Is it time for "precision"? Do not forget Cardiac Rehabilitation for the HF patient.

Courtesy Dr. Bozkurt; www. Globalcvctforum.com

What Is Precision Medicine? When Is the Right Time?

- Personalized approach to improving health and treating disease
- Approach to disease prevention and treatment strategies that takes into account individual variability in genes, comorbidities, environment, lifestyle, access, and affordability – not "cookbook" medicine
- Patient engagement-partners
- Use of electronic health records
- Availability of mobile health technologies
- Tools for analyzing large datasets
- Ability to identify key genetic mechanisms

What Does the Future Hold?

- HFrEF----SGLT2, mechanisms
- How to start the pillars of HF care? Strategies?
- An "a-ha" moment for renal physiology in HFrEF
- HFpEF—strategies, phenotyping, Empa HFpEF and DELIVER positive. More agents in studies.
- Mechanisms of kidney protection: Importance of kidney protection
- Acute heart failure—treated as a "blip" in the patient journey

Summary and Looking Ahead

- New era of discovery in HF
- New targets
- New agents without mortality reduction
- New mechanisms, different perspective
- Taking lessons from failed trials
- Reordering entry criteria, reordering therapy
- Earlier intervention
- Better refine patient population, e.g., biomarkers
- Mechanisms of kidney protection: Importance of kidney protection
- Transition from acute to chronic
- We have much work to do!

