www.cardiometabolichealth.org



## Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP) Continuous Glucose Monitoring: Rationale & Overview

Anne Peters, MD Director, USC Clinical Diabetes Programs Professor of Medicine (Clinical Scholar) USC Keck School of Medicine Los Angeles, LA

## **Disclosure of Potential Conflicts of Interest**

### Advisory Boards

- Abbott Diabetes Care
- Lilly
- Medscape
- Vertex

#### **Research Funding**

- Insulet
- Abbott

#### **Stock Options**

- Omada Health
- Livongo/Teladoc

## Is A1c Enough To Help Us Manage Patients?

#### Strengths of A1c

- Reflects blood glucose concentrations over ~3 months
- Only metric of glycemic control that has been prospectively associated with chronic complications
- Useful for assessing trends in a population over time

#### Limitations of A1c

- Affected by other conditions that affect red blood cell lifespan or interfere with glucose binding to hemoglobin
- A wide range of mean glucose concentrations exist for a given HbA1c level
- Provides no information about hypoglycemia frequency or severity
- May under-represent the burden of hyperglycemia in African-Americans

#### **CGM-measured Mean Glucose Versus Lab-Measured HbA1c**



Slide thanks to Roy Beck (Beck RW, et al. Diabetes Care. 2017;40:994-999.

#### What Does Blood Glucose Monitoring (BGM) Show Us?

| Date       | Overnight<br>12 AM - 6 AM |          |      | Early Morning    |      | Late Morning<br>9 AM - 11 AM |       | Early Afternoon<br>11 AM - 2 PM |      | Late Afternoon<br>2 PM - 5 PM |      | Early Evening<br>5 PM - 7 PM |       | Late Evening |     |                  | Bedtime<br>10 PM - 12 AM |     |       |      |         |       |      |     |
|------------|---------------------------|----------|------|------------------|------|------------------------------|-------|---------------------------------|------|-------------------------------|------|------------------------------|-------|--------------|-----|------------------|--------------------------|-----|-------|------|---------|-------|------|-----|
|            |                           |          |      |                  |      |                              |       |                                 |      |                               |      |                              |       | 7 PM - 10 PM |     |                  |                          |     |       |      |         |       |      |     |
|            | Gluc.                     | Med.     | сно  | Gluc.            | Med. | СНО                          | Gluc. | Med.                            | сно  | Gluc.                         | Med. | СНО                          | Gluc. | Med.         | СНО | Gluc.            | Med.                     | сно | Gluc. | Med. | сно     | Gluc. | Med. | CHC |
| 12/20/2016 |                           |          | No.  | <sup>0</sup> 110 |      |                              |       |                                 |      | ° 95                          |      |                              |       |              |     |                  |                          |     | 100   | 1    | 2.5     |       |      |     |
|            |                           |          |      |                  |      |                              |       |                                 |      | • 156                         |      |                              |       |              |     |                  |                          |     |       |      | 1.2.2.2 |       |      |     |
| 12/19/2016 |                           |          | 100  | ° 89             |      |                              | des.  | 1. See                          |      | ° 113                         |      |                              | • 210 | 2            |     | <sup>0</sup> 126 |                          |     | • 216 |      |         |       |      |     |
|            | Sec.                      |          | 1997 |                  |      |                              |       |                                 |      |                               |      |                              | • 182 |              |     |                  |                          |     | 1     | 1.30 |         |       |      |     |
| 2/18/2016  |                           | 1        | 1    | ° 81             | 176  |                              |       |                                 |      | ° 80                          |      |                              | • 117 |              |     | <sup>0</sup> 104 |                          |     | • 226 |      |         |       |      |     |
| 2/17/2016  | States                    |          |      | ° 92             |      |                              |       |                                 | 1.11 | ° 99                          |      |                              | • 167 |              |     | <sup>0</sup> 135 |                          |     | • 140 |      |         |       |      |     |
| 2/16/2016  |                           | R. House |      | ° 97             |      |                              | 18-1  |                                 | 12.5 | ° 94                          |      |                              | • 130 |              |     | <sup>o</sup> 131 |                          |     | • 139 |      |         |       |      |     |
| 2/15/2016  |                           |          |      | ° 87             |      |                              |       | See.                            |      | <sup>0</sup> 107              |      |                              | • 123 |              |     | <sup>0</sup> 146 | -                        |     | • 215 |      |         |       |      |     |
| 2/14/2016  |                           |          |      | <sup>0</sup> 106 |      |                              |       |                                 |      | <sup>o</sup> 130              |      |                              | • 155 |              |     | <sup>0</sup> 105 |                          |     | 150   |      |         |       |      |     |
| 2/13/2016  | 1                         |          |      | ° 98             |      |                              |       |                                 |      | ° 94                          |      |                              | • 125 |              |     | ° 111            |                          |     | • 166 |      |         |       |      |     |
| 12/12/2016 |                           |          | 1    | <sup>0</sup> 101 |      |                              |       |                                 |      | <sup>0</sup> 132              |      |                              | • 161 |              |     | <sup>o</sup> 143 |                          |     | • 165 |      |         |       |      |     |
| 12/11/2016 | - California              |          |      | ° 84             |      |                              |       |                                 |      | ° 77                          |      |                              | • 99  |              |     | <sup>0</sup> 123 |                          |     | * 161 |      |         |       |      |     |
| 12/10/2016 | S.C.S.                    |          |      | 98               |      |                              |       |                                 |      | • 105                         |      |                              | • 133 |              |     | <sup>0</sup> 170 |                          |     | 143   |      |         | 129   |      |     |

All data could not be displayed. Please check the online view.

#### What Does Blinded (Professional) CGM Show Us?



## Real-Time CGM: A1C of 6.8% in a Person on Multiple Daily Insulin Injections (MDI)



### Real Time CGM: A1C of 6.9% in a Person on MDI



#### The Same A1C, Very Different Glucose Control





www.cardiometabolichealth.org



## Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

## Available CGM Devices and Associated Features

Anne Peters, MD Director, USC Clinical Diabetes Programs Professor of Medicine (Clinical Scholar) USC Keck School of Medicine Los Angeles, LA

### **Current Continuous Glucose Monitoring (CGM) Systems**









# What Types of CGM Are There?

 Professional: owned, provided by the clinician, placed on patient for 10 – 14 days to obtain brief "snapshots" of blinded or unblinded data

#### VS

 Personal: owned and used by the patient, replaced every 10 – 14 days (or implanted for 3 – 6 months), data viewed by the patient in real-time

# **RT-CGM: Dexcom G6 and G7**



- Factory calibrated
- 10 days of sensor use
- Measures glucose concentration every 5 min
- Has alarms for hypoglycemia and hyperglycemia thresholds and alerts for trending high or low
- Can display glucose levels on a receiver, phone, or watch
- Can 'share' glucose readings with someone else
- G6 has two pieces, 2 hour warm up, larger
- G7 is smaller, one piece, 30 minute warm up
- G6 works with Tandem Control IQ + Omnipod 5

# IS-CGM: Libre 14 day, Libre 2 and Libre 3



- Factory-calibrated
- 14 days of sensor use
- Libre 14 day/2: Swiping for data
- Libre 3: direct to smart phone
- Libre 14 day: no alarms
- Libre 2 and 3: high and low alarms
- Not yet integrated with pumps

# **RT-CGM: Guardian Connect**



- Sensor life 7 days
- Needs fingerstick calibration
- Transmits to smart phone
- Predictive alerts and alarms
- Sugar IQ decision support

## **RT-CGM: Eversense**



- Implanted every 180 days
- Need fingerstick calibration
- Transmits to smart phone
- Predictive alerts and alarms

www.cardiometabolichealth.org



## Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

## CGM: Indications & Data Interpretation

Anne Peters, MD Director, USC Clinical Diabetes Programs Professor of Medicine (Clinical Scholar) USC Keck School of Medicine Los Angeles, LA

# Who Should Have a CGM?

- Anyone on insulin—from one injection to many, any type of diabetes
- Anyone on noninsulin therapy having episodes of level 2 or 3 hypoglycemia
- Potentially everyone else when starting/adjusting therapy
  - Generally not covered, although some insurances will pay for it.

## **How Is Data From CGM Interpreted?**

#### AGP Report: Continuous Glucose Monitoring



#### Ambulatory Glucose Profile (AGP)



AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if they occurred in a single day.

#### How Is Data From CGM Interpreted? Step 1 Patient name, dates, use of CGM



### How Is Data From CGM Interpreted? Step 2 Percent time: low, in target, high



| Katie Test Patient DOB: Jan 1, 1970                  |
|------------------------------------------------------|
| 14 Days: August 8-August 21, 2021                    |
| Time CGM Active: 100%                                |
|                                                      |
| Glucose Metrics                                      |
| Average Glucose175 mg/dL<br>Goal: <154 mg/dL         |
| Glucose Management Indicator (GMI) 7.5%<br>Goal: <7% |
| Glucose Variability                                  |

### How Is Data From CGM Interpreted? Step 3 Average glucose, GMI, variability

#### **AGP Report:** Continuous Glucose Monitoring



### How Is Data From CGM Interpreted? Step 4 Modal Day



### How Is Data From CGM Interpreted? Step 5 Individual Days



## **Alarm Settings: Adjust to Avoid Over-Alarming**

#### Example: Dexcom RT-CGM

#### Alert Settings for Device

#### General

| Low                           |
|-------------------------------|
| Low Repeat                    |
| High                          |
| High Repeat                   |
| Fall Rate                     |
| Rise Rate                     |
| Urgent Low                    |
| Urgent Low Repeat             |
| Urgent Low Soon               |
| <b>Urgent Low Soon Repeat</b> |
| Signal Loss                   |

70 mg/dL On 15 min On Off 200 mg/dL 30 min Off On 3 mg/dL/min 3 mg/dL/min On On 55 mg/dL On 30 min On 55 mg/dL On 30 min 20 min Off

#### Scheduled - Bedtime

.

Status: On Sun, Mon, Tue, Wed, Thu, Fri, Sat 10:30 PM - 7:00 AM

| Low                   |
|-----------------------|
| Low Repeat            |
| High                  |
| High Repeat           |
| Fall Rate             |
| Rise Rate             |
| Urgent Low            |
| Urgent Low Repeat     |
| Urgent Low Soon       |
| Urgent Low Soon Repea |
| Signal Loss           |

70 mg/dL On 15 min On 250 mg/dL 60 min On On 3 mg/dL/min On 3 mg/dL/min On 55 mg/dL 30 min On On 55 mg/dL 30 min 20 min Off

On

On

## **Sensor: Skin Issues**





# **Sensors Fall Off**

#### Many Over-Bandages Available



Liquid adhesives can make sensor stick better







## **Devices Must Be Downloaded for Interpretation**

•However, many offices don't download data; staff needed to do so for each patient

- Devices are not compatible with every data platform
- Need USB cords for people using receivers
- Many pages can print out, need to streamline most useful reports to optimize time in visit
- •Many devices now have cloud-based programs with continuous data streams
- •Increasing numbers of EHR's are able to capture CGM data
- •Work with your local device company reps to set up systems that work
- Diabetes educators often can make this happen

# **Billing Codes for CGM**

- **95251: Interpretation** of *personal or professional* CGM, requires at least 72 hours of data to be reviewed and a report by a prescribing HCP
  - Does not require face-to-face contact, up to 1 a month by many payors
- 95250: Professional study office-provided equipment, sensor placement, hook-up, calibration of monitor, patient training, removal of sensor, and printout of recording
- **95249:** Training on personal patient-provided equipment and sensor placement and initiation, once per unit

## **Education and Follow-up Are Vital**

- Diabetes educators can be extremely helpful
- Companies can provide educators
- Devices apps can be programed to give weekly feedback to patients

CMHC Cardiometabolic Health Congress

www.cardiometabolichealth.org

## Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

## **CGM Patient Cases**

Anne Peters, MD Director, USC Clinical Diabetes Programs Professor of Medicine (Clinical Scholar) USC Keck School of Medicine Los Angeles, LA

## **Prediabetes and Type 2 Diabetes**

# **Prediabetes**

50 yo female with an FPG = 98 and an A1C = 5.7% Lean, no FH of diabetes, negative antibodies.

| GLUCOSE STATISTICS AND TAR                      | GETS                                                             | TIME IN    | RANGES                      |                  |  |
|-------------------------------------------------|------------------------------------------------------------------|------------|-----------------------------|------------------|--|
| April 28, 2021 - May 11, 2021                   | 14 Days                                                          | 2          | Vom High                    | 0%               |  |
| % Time CGW IS Active                            | 96%                                                              |            | Very High >250 mg/dL        | <b>0%</b> (0min  |  |
| Ranges And Targets For                          | Type 1 or Type 2 Diabetes                                        | 250<br>180 | High 181 - 250 mg/dL        | <b>0%</b> (0mi   |  |
| Glucose Ranges<br>Target Range 70-180 mg/dL     | Targets % of Readings (Time/Day)<br>Greater than 70% (16h 48min) |            |                             |                  |  |
| Below 70 mg/dL                                  | Less than 4% (58min)                                             |            |                             |                  |  |
| Below 54 mg/dL                                  | Less than 1% (14min)                                             |            | Target Range 70 - 180 mg/dL | 99% (23h 46min   |  |
| Above 180 mg/dL                                 | Less than 25% (6h)                                               |            |                             |                  |  |
| Above 250 mg/dL                                 | Less than 5% (1h 12min)                                          |            |                             |                  |  |
| Each 5% increase in time in range (70-180 mg/d  | L) is clinically beneficial.                                     |            |                             |                  |  |
| Average Glucose                                 | 99 mg/dL                                                         | 70         | Low 54 - 69 mg/dL           | <b>1%</b> (14min |  |
| Glucose Management Indicator (Gl                | MI) 5.7%                                                         | 54         | Very Low <54 mg/dL          | 0% (0min)        |  |
| Glucose Variability                             | 14.5%                                                            |            |                             |                  |  |
| Defined as percent coefficient of variation (%C | V): target <36%                                                  |            |                             |                  |  |

#### AMBULATORY GLUCOSE PROFILE (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.



#### DAILY GLUCOSE PROFILES

Each daily profile represents a midnight to midnight period with the date displayed in the upper left corner



### T2DM + CVD: On semaglutide, empagliflozin, metformin

64 yo male with a 10-year h/o T2DM, +neuropathy, s/p LAD stent. On max medical management.

#### **CGM Glucose Pattern Summary**

September 21, 2018 - October 2, 2018 (12 Days)



\*Reference ranges calculated from population without diabetes.

#### Ambulatory Glucose Profile

Curves/plots represent glucose frequency distributions by time regardless of date



## Patient #2: T2DM on Metformin Alone

68 yo female with T2DM, BDR and an eGFR = 58, A/C ratio = 98.



## Patient #2: T2DM with an SGLT-2 Added

#### **CGM Glucose Pattern Summary**

February 7, 2019 - February 21, 2019 (15 Days)

#### CGM Device: FreeStyle Libre Pro [N/A]% Compliant w/Calibration\* 100% Time Worn

\*Not applicable to FreeStyle Libre or FreeStyle Libre Pro which do not require calibration.



#### Ambulatory Glucose Profile

Curves/plots represent glucose frequency distributions by time regardless of date



## Pandemic—Related Increase in A1C

86 yo male on max oral therapy, A1C generally ~6.8%, nearly blind from macular degeneration.

| d ©₽∿Did ~ del et et et et et et et                                                   |                                        | ******* | 424 Th                            |                        |
|---------------------------------------------------------------------------------------|----------------------------------------|---------|-----------------------------------|------------------------|
| ŀ>M <b>EIXI(7868-18-1</b> 24)-M <b>EIXI(72-%8-18-1</b><br>A ®OM&I &*X 8 M <b>0</b> 6M | 2004 - 200<br>2004 - 200<br>2004 - 200 |         | <b>+IIIEP &gt;0600</b> >250 mg/dL | (5h 17min)             |
| anyn: i maarini) +00                                                                  | Type 1 or Type 2 Diabetes              |         |                                   |                        |
| d ante moenne<br>Target Range 70-180 mg/dL                                            | Greater than 70% (16h 48min)           | 250     |                                   |                        |
| Below 70 mg/dL                                                                        | Less than 4% (58min)                   |         | P 250 mg/dl                       | (11h 17min)            |
| Below 54 mg/dL                                                                        | Less than 1% (14min)                   |         |                                   |                        |
| Above 180 mg/dL                                                                       | Less than 25% (6h)                     |         |                                   |                        |
| Above 250 mg/dL                                                                       | Less than 5% (1h 12min)                | 180     | AND MA COMM                       |                        |
| Each 5% increase in time in range (70-180 mg/dL)                                      | is clinically beneficial.              |         | 49200 Hall 70 - 180 mg/dL         | <b>ELLA</b> (7h 26min) |
| a suitashif anito ui                                                                  | mg/dL                                  | 70      | 8 54 - 69 mg/dL                   | (0min)                 |
|                                                                                       | 100 - 10 <u>0</u> 0-                   | 54      |                                   | CA (Omin)              |
| \$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$           | ncina.<br>Mennya ka                    |         |                                   |                        |

#### 

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.



#### ୧୫ ଅପ୍ଟେଶ ଉକ୍ଟର ମଧ୍ୟ କାଳପ୍ରମାଙ୍କ୍ରେକ୍ଟ

Each daily profile represents a midnight to midnight period with the date displayed in the upper left corner



Source: Battelino, Tadej, et al. "Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range." Diabetes Care, American Diabetes Association, 7 June 2019, https://doi.org/10.2337/dci19-0028.

### **Changed His Lifestyle and Got Vaccinated!**

#### AGP Report

March 9, 2021 - April 5, 2021 (28 Days)

| March 9, 2021 - April 5, 2021                    | 28 Days                                                          |     |                             |               |  |
|--------------------------------------------------|------------------------------------------------------------------|-----|-----------------------------|---------------|--|
| % Time CGM is Active                             | 64%                                                              | Г   | Very High >250 mg/dL        | 0% (0min)     |  |
| Ranges And Targets For                           | Type 1 or Type 2 Diabetes                                        | 250 | High 181 - 250 mg/dL        | 12% (2h 53min |  |
| Glucose Ranges<br>Target Range 70-180 mg/dL      | Targets % of Readings (Time/Day)<br>Greater than 70% (16h 48min) | 100 |                             |               |  |
| Below 70 mg/dL                                   | Less than 4% (58min)                                             |     |                             |               |  |
| Below 54 mg/dL                                   | Less than 1% (14min)                                             |     | Towned Downey or an         | 000/          |  |
| Above 180 mg/dL                                  | Less than 25% (6h)                                               |     | Target Range 70 - 180 mg/dL | 88% (21h 7min |  |
| Above 250 mg/dL                                  | Less than 5% (1h 12min)                                          |     |                             |               |  |
| Each 5% increase in time in range (70-180 mg/dL) | s clinically beneficial.                                         |     |                             |               |  |
| Average Glucose                                  | 140 mg/dL                                                        | 70  | Low 54 - 69 mg/dL           | 0% (0min      |  |
| Glucose Management Indicator (GM                 | ) 6.7%                                                           | J+  | Very Low <54 mg/dL          | 0% (0min)     |  |
| Glucose Variability                              | 23.8%                                                            |     |                             |               |  |

#### AMBULATORY GLUCOSE PROFILE (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.



#### DAILY GLUCOSE PROFILES Most recent 14 days. See Weekly Summary report for more days.





#### How CGM Can Help With Remote Management

- 74-year-old patient had been doing well on BIDO
- He called to say that his "sugars were out of control"
- A1C's below 8.0% on metformin 1 gm BID, sitagliptin 50 mg, 12 units of basal insulin. Using CGM.
- Metformin had been stopped due to a fall in his eGFR to 22.
- I went into the cloud-based program for his CGM, pulled up his data and saw the following:

## **His CGM Data**

#### AMBULATORY GLUCOSE PROFILE (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.



#### DAILY GLUCOSE PROFILES

Each daily profile represents a midnight to midnight period with the date displayed in the upper left corner.



# What I Did

- Increased his basal insulin
- Added glipizide 5 mg BID to avoid complexity of prandial insulin
- Reduced his sitagliptin to 25 mg
- Followed his BG's every 3 days and adjusted his medications until he improved

CMHC Cardiometabolic Health Congress

www.cardiometabolichealth.org

## Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

# **CGM: Conclusions**

Anne Peters, MD Director, USC Clinical Diabetes Programs Professor of Medicine (Clinical Scholar) USC Keck School of Medicine Los Angeles, LA

## Conclusions

- CGM can be useful in a wide variety of settings
- Systems must be set-up for data downloading and analysis
- Training, education and follow-up are key to success
- Patients often find CGM preferable to performing BGM and increasing coverage has improved access for many

# **Thank You**