www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

Hypertriglyceridemia: Association or Causative for ASCVD Management?

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu

Duality of Interests

– Consultant/Advisory Boards

Amgen Arrowhead Better Co. 89bio Lexicon Novo Nordisk **Precision BioSciences** The Healthy Aging Co. Tolmar **UpToDate** WW (Weight Watchers)

Goals

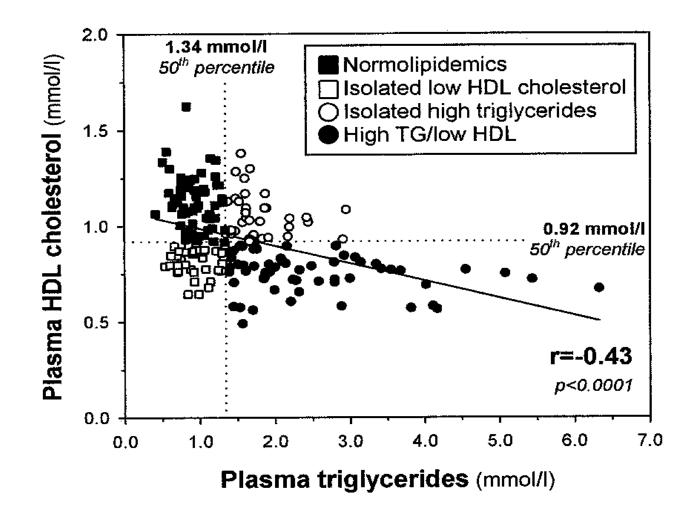
- Discuss problems with the definition, related prevalence and causes of hypertriglyceridemia.
- Provide updates on if/how hypertriglyceridemia relates to atherosclerotic CVD using informative CVOTs.
- Evaluate strategies for triglyceride management:
 - Moderate
 - Severe
- Summarize HDL-C science and management.

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

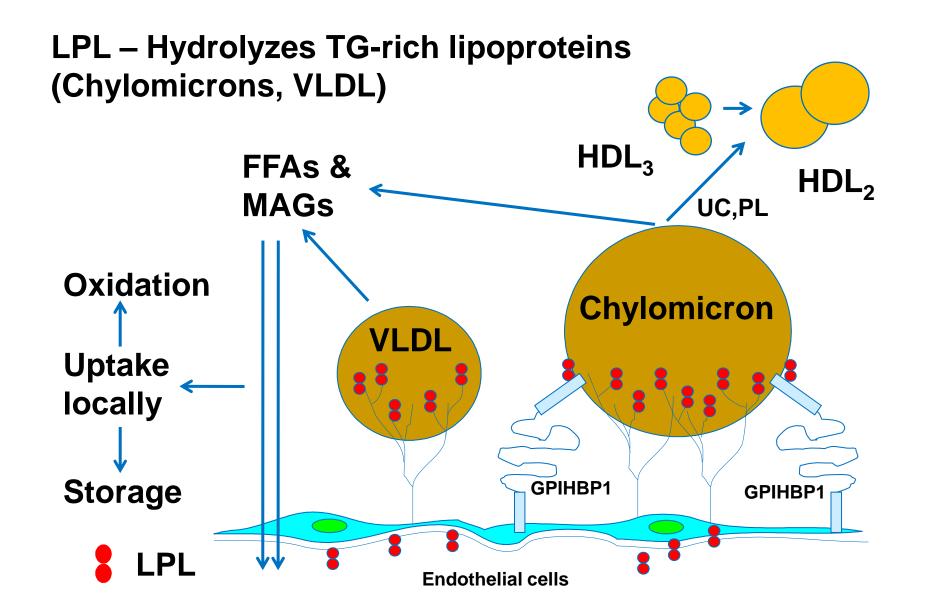
(ag


Challenges with the Definition, Prevalence and Causes of Hypertriglyceridemia

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu

Goals

- Discuss problems with the definition, related prevalence and causes of hypertriglyceridemia.
- Provide updates on if/how hypertriglyceridemia relates to atherosclerotic CVD using informative CVOTs.
- Evaluate strategies for triglyceride management:
 - Moderate
 - Severe
- Summarize HDL-C science and management.


Plasma Triglycerides are Inversely Associated with HDL-C

Why are Levels of HDL-C Inversely Related to Plasma Triglycerides?

 The formation of larger more buoyant cholesterol-enriched HDL is dependent on the hydrolysis of TG-rich lipoproteins by lipoprotein lipase (LPL).

Lipoprotein Lipase

Why are Levels of HDL-C Inversely Related to Plasma Triglycerides?

- The formation of larger more buoyant cholesterol-enriched HDL is dependent on the hydrolysis of TG-rich lipoproteins by lipoprotein lipase (LPL).
- When hypertriglyceridemia is present, HDL particles are more TG-enriched, replacing cholesterol ester with TG in the lipoprotein core.
- TG-enriched HDL are more rapidly catabolized.

Hypertriglyceridemia is the Most Difficult Lipid Disorder to Evaluate and Treat – Why?

- The common disorders are not single genes.
- The acquired disorders are numerous.
- The clinical trials with TG lowering drugs have suffered:
 - design
 - number of trials
 - results have been mostly hypothesis-generating
- Is it TG or the TG-rich particles that confer risk for ASCVD and/or the company they keep?

Problems Defining Hypertriglyceridemia

• Fasting levels are variable.

Intra-Individual Variability of Lipids and Lipoproteins

Diurnal Biological Variability (CV)	Monthly Biological Variability (CV)		
$ ightarrow$ TG \Rightarrow 29.5%	$ ightarrow$ TG \Rightarrow 20.7%		
➢ Apo B ⇒ 6.5%	≻ Apo B ⇒ 9.7%		
▶ Apo A-1 \Rightarrow 6.5%	≻ Apo A-1 ⇒ 9.4%		
$ ightarrow$ LDL-C \Rightarrow 5.1%	$ ightarrow$ LDL-C \Rightarrow 5.2%		
$ ightarrow$ HDL-C \Rightarrow 3.5%	$ ightarrow$ HDL-C \Rightarrow 4.1%		
$ ightarrow$ TC \Rightarrow 2.4%	$ ightarrow$ TC \Rightarrow 4.2%		

Results: Generalized Additive Model (GAM) Analyses of TG Variability and CHD

Univariate Analyses		
Variable	Parameter estimate	P-value
SD log (TG) [linear]	0.25	0.64
SD log (TG) [non-linear]		0.02

Multivariate Analyses

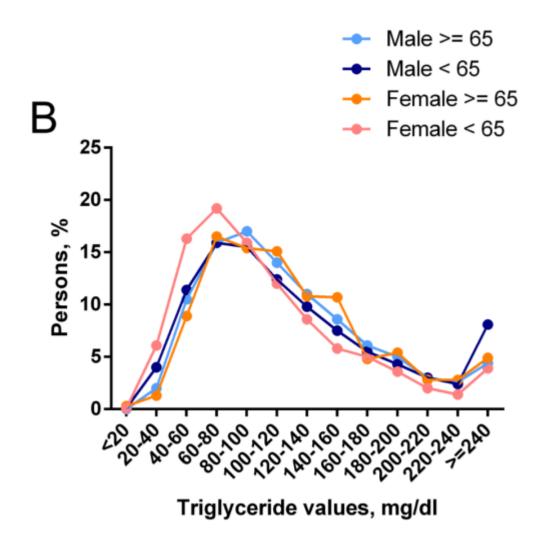
Variable	Parameter estimate	P-value
SD log (TG) [linear]	1.41	0.13
SD log (TG) [non-linear]		< 0.0001

Other significant CHD predictors include mean LDL-C, baseline age, male gender, and log TG

Problems Defining Hypertriglyceridemia

- Fasting levels are variable.
- Population data are skewed.
- Relationships to CHD often fail to relate to extent of elevations.
- What is a normal TG level:
 - Is it a fasting TG of <150 mg/dl?</p>
 - Or should it be based on non-fasting levels?

Definitions of Hypertriglyceridemia


Society	Category	Serum triglyceride conc. mg/ dL (mmol/L)
AHA/ ACC/ Multisociety	Normal Moderate Severe	≤ 175 (≤ 2.0) 175-499 (2.0-5.6) ≥ 500 (≥ 5.7)
ESC	Normal Mild- moderate Severe	<150 (< 1.7) 150-180 (1.7-9.9) >880 (>10)
Endocrine Society	Normal Mild Moderate Severe Very severe	<150 (<1.7) 150-199 (1.7 - 2.3) 200-999 (2.3-11.2) 1000-1999 (11.2-22.4) ≥ 2000 (>22.4)

- **Normal** <150 mg/dL (<1.7 mmol/L)
- Moderate hypertriglyceridemia 150 to 499 mg/dL (1.7 to 5.6 mmol/L)
- Moderate to severe hypertriglyceridemia 500 to 999 mg/dL (5.65 to 11.3 mmol/L)
- Severe hypertriglyceridemia ≥1000 mg/dL (≥11.3 mmol/L)

Overall Prevalence of Hypertriglyceridemia in NHANES 2007-2014 (%)

Fasting TG ≥150 mg/dL	Prevalence %	
Overall (age ≥20 y)	25.9	
Statin-treated	31.6	
Statin-treated, LDL-C <100 mg/dL	27.6	
Statin-treated & Diabetes	39.5	
Statin-treated & ASCVD	30.5	
Statin-treated & Diabetes or ASCVD	34.4	

Distribution of Plasma Triglycerides in NHANES 2007-2018 (%)

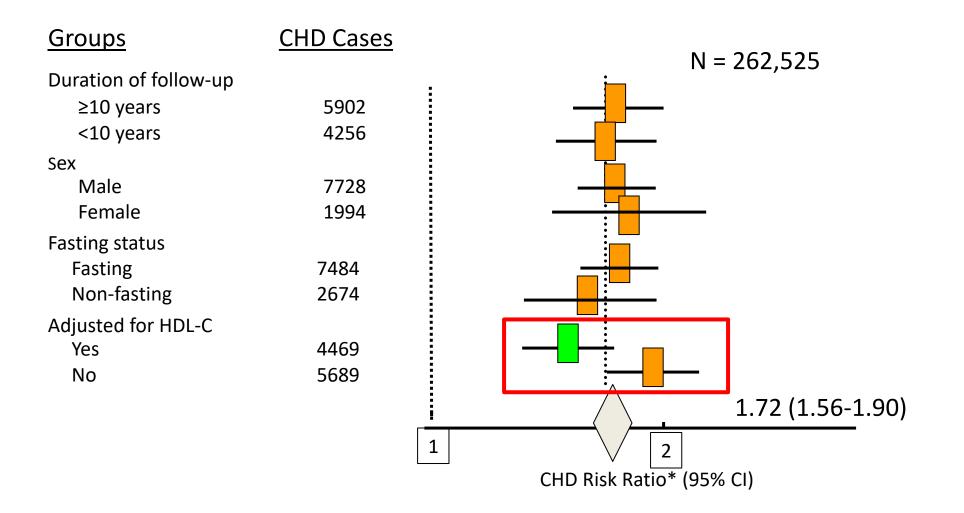
www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

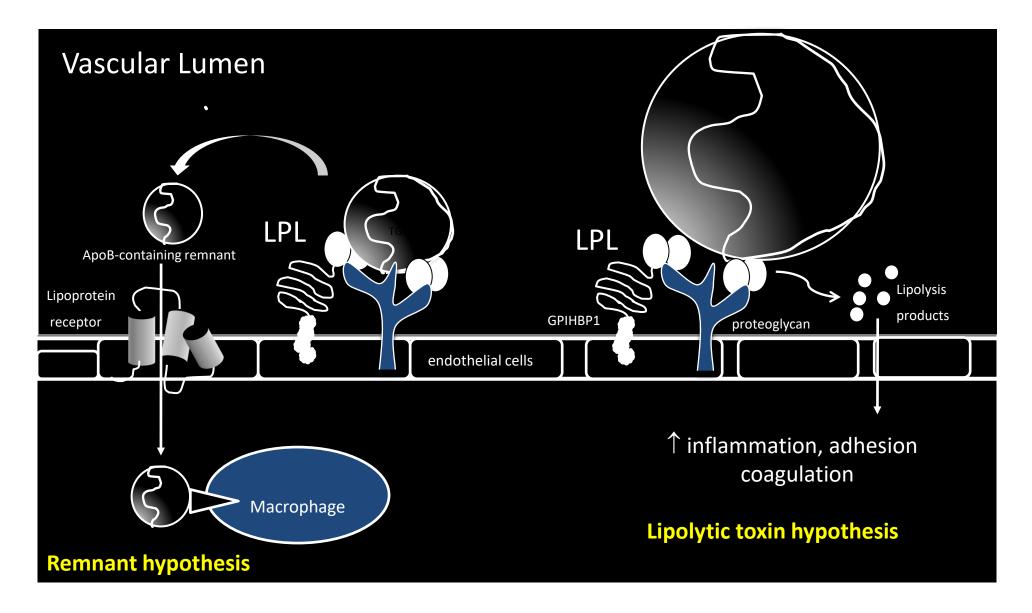
Certified Cardiometabolic Health Professional (CCHP)

fag

Hypertriglyceridemia & ASCVD Risk

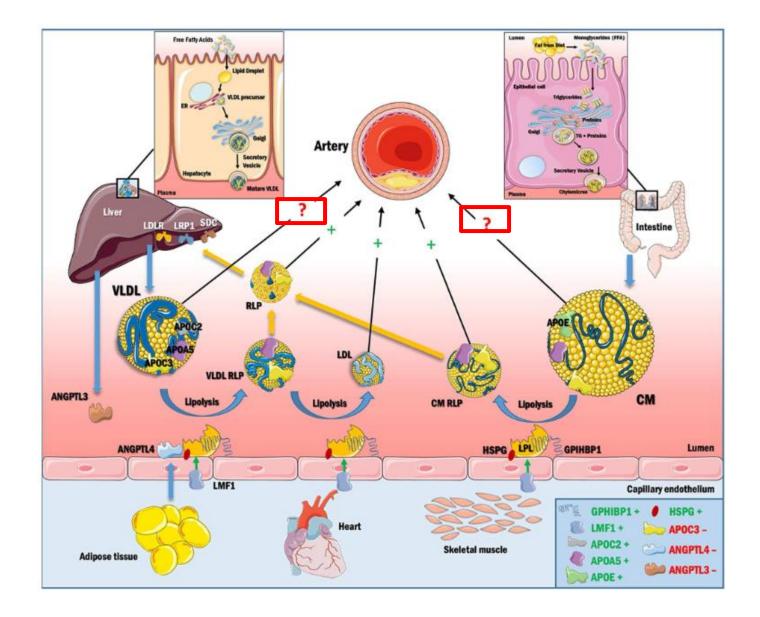

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu

Goals


- Discuss problems with the definition, related prevalence and causes of hypertriglyceridemia.
- Provide updates on if/how hypertriglyceridemia relates to atherosclerotic CVD using informative CVOTs.
- Evaluate strategies for triglyceride management:
 - Moderate
 - Severe
- Summarize HDL-C science and management.

So, does hypertriglyceridemia cause CVD, or are increased TG a risk factor by association only?

Plasma Triglycerides and CHD: Meta-Analysis of 29 Studies



Atherogenicity of TG-Rich Lipoproteins

Goldberg IJ, Eckel RH, McPherson R, ATVB, 31:1716, 2011

Are Triglycerides Simply Innocent Bystanders?

THE AMERICAN Journal *of* Medicine ®

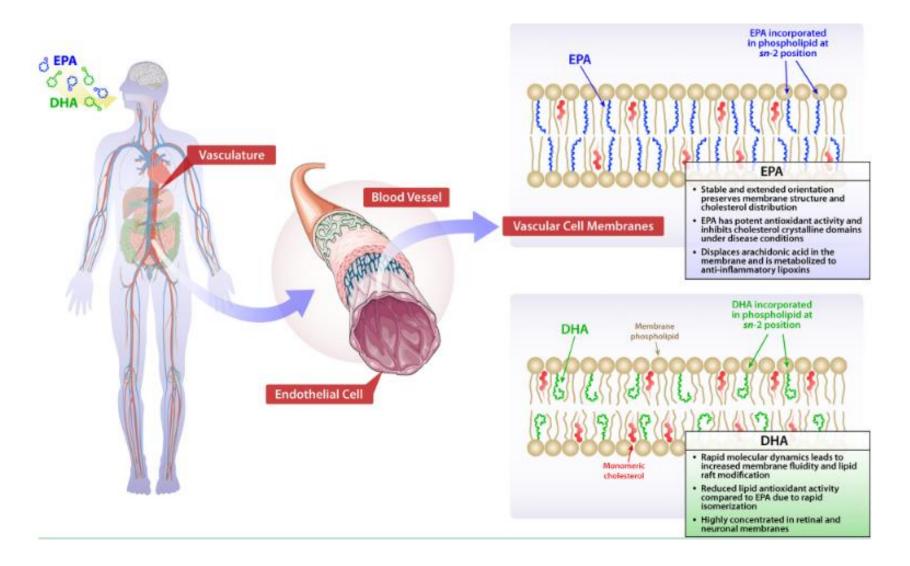
Mechanistic Insights from REDUCE-IT STRENGTHen the Case Against Triglyceride Lowering as a Strategy for Cardiovascular Disease Risk Reduction

R. Preston Mason, PhD,^a Robert H. Eckel, MD^b

^aBrigham and Women's Hospital and Harvard Medical School, Boston, Mass; ^bUniversity of Colorado Anschutz Medical Campus, Aurora.

ABSTRACT

Elevated triglyceride (TG) levels have been linked to residual atherosclerotic cardiovascular risk in patients with controlled low-density lipoprotein cholesterol. However, outcome trials testing TG-lowering agents have failed to demonstrate cardiovascular risk reduction in statin-treated subjects. One such example is the recent STRENGTH trial, which tested mixed omega fatty acids (n3-FAs, 4 g/d) in high-risk patients with elevated TGs. Similar to trials using fibrates and niacin, the STRENGTH trial failed despite effective TG lowering. Results from these studies have contributed to skepticism about the use of TG-lowering therapy for cardiovascular risk. However, new mechanistic insights are provided by the REDUCE-IT


CLINICAL SIGNIFICANCE

Elevated triglycerides (TGs) are associated with increased cardiovascular risk; however, current TG-lowering therapies are ineffective in reducing such risk Icosapent ethyl, highly purified eicosapentaenoic acid, was recently shown to reduce cardiovascular events by 25% and was not associated with TG lowering.

Icosapent ethyl appears to have broad pleiotropic effects associated with on-treatment eicosapentaenoic acid levels. Evidence against TG lowering in reducing cardiovascular risk should guide

other therapeutic strategies to lower residual risk.

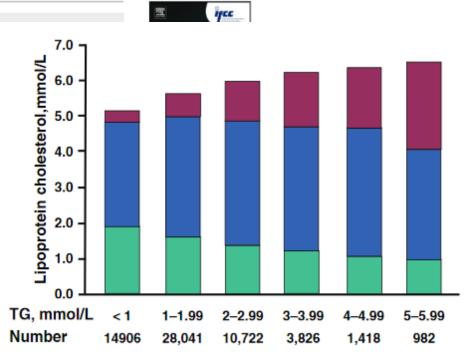
Proposed Location and Contrasting Effects of EPA and DHA on Membrane Structure, Lipid Oxidation and Tissue Distribution

Contents lists available at ScienceDirect

Clinica Chimica Acta

journal homepage: www.elsevier.com/locate/clinchi

Invited critical review


Postprandial hypertriglyceridemia as a coronary risk factor

Jan Borén^{a,*}, Niina Matikainen^{b,c}, Martin Adiels^a, Marja-Riitta Taskinen^b

^a Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden

^b HUCH Heart and Lung Centre, Research Programs Unit Diabetes and Obesity, Cardiovascular Research Group, Finland

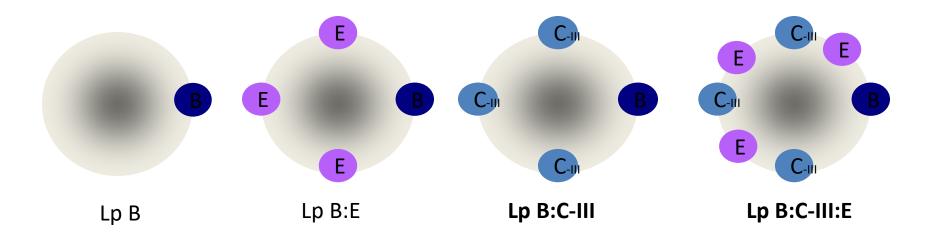
^c Department of Endocrinology, Helsinki University Central Hospital, Diabetes & Obesity, University of Helsinki, Helsinki, Finland

ARTICLE INFO

Article history:

Received 13 November 2013 Received in revised form 10 January 2014 Accepted 11 January 2014 Available online 6 February 2014

Keywords:


Postprandial hypertriglyceridemia Cardiovascular risk factor Triglyceride-rich lipoproteins

ABSTRACT

Postprandial hypertriglyceridemia is now established as an important risk factor for cardiovascular disease (CVD). This metabolic abnormality is principally initiated by overproduction and/or decreased catabolism of triglyceride-rich lipoproteins (TRLs) and is a consequence of predisposing genetic variations and medical conditions such as obesity and insulin resistance. Accumulation of TRLs in the postprandial state promotes the retention of remnant particles in the artery wall. Because of their size, most remnant particles cannot cross the endothelium as efficiently as smaller low-density lipoprotein (LDL) particles. However, since each remnant particle contains approximately 40 times more cholesterol compared with LDL, elevated levels of remnants may lead to accelerated atherosclerosis and CVD. The recognition of postprandial hypertriglyceridemia in the clinical setting has been severely hampered by technical difficulties and the lack of established clinical protocols

Lipoprotein cholesterol as a function of increasing levels of non-fasting triglycerides. Red = remnant cholesterol, blue = LDL-cholesterol and green = HDL-cholesterol.

VLDL Defined by Apolipoprotein Content

ORIGINAL ARTICLE

	The NEW ENGLAND JOURNAL OF MEDICINE
	OKIGINAL ARTICLE
	Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia
cko asn ry me fec	 Daniel Gaudet, M.D., Ph.D., Veronica J. Alexander, Ph.D., Brenda F. Baker, Ph.D., Diane Brisson, Ph.D., Karine Tremblay, Ph.D., Walter Singleton, M.D., Richard S. Geary, Ph.D., Steven G. Hughes, M.B., B.S., Nicholas J. Viney, B.Sc., Mark J. Graham, M.S., Rosanne M. Crooke, Ph.D., Joseph L. Witztum, M.D., John D. Brunzell, M.D.,* and John J.P. Kastelein, M.D., Ph.D.
TH e s	
	ABSTRACT
From the Department of Medicine, Uni- versité de Montréal and Ecogene-21 Clin- ical Research Centre, Chicoutimi, QC, Canada (D.G., D.B., K.T.); Isis Pharma-	BACKGROUND Apolipoprotein C-III (APOC3) is a key regulator of plasma triglyceride levels. Elevated triglyceride levels are associated with a risk of adverse cardiovascular events and pan- creatitis. ISIS 304801 is a second-generation antisense inhibitor of APOC3 synthesis.

sity Hospital and edical Sciences, 1 (A.B.J., R.F.-S.,

giverness owing to mutations in the gene encoding apolipoprotein C3 (APOC3) are associated with a reduced risk of ischemic cardiovascular disease in the general population is unknown.

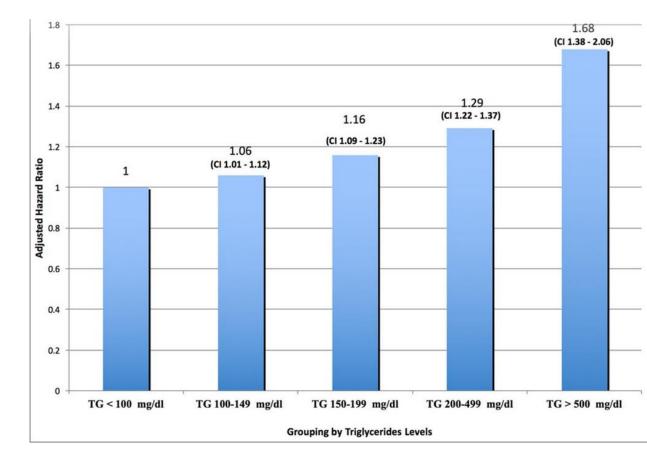
B.G.N., A.T.-H.), the Department of Clinical Biochemistry, Rigshospitalet (A.B.J., R.F.-S., A.T.-H.), the Department of Clinical Biochemistry (B.G.N.) and the Copenhagen General Population Study (R.F.-S., B.G.N., A.T.-H.), Herlev Hospital, and the Copen-

Mechanisms of Atherogenicity of Apo CIII Containing TG-Rich Lipoproteins

- ↑ secretion in insulin resistant states
 - Metabolic syndrome
 - Type 2 diabetes
- Apo CIII itself \uparrow PKC β and \rightarrow insulin resistance
- Apo CIII gene expression \uparrow by NF- κ B
- \downarrow TG-rich lipoprotein catabolism
- \downarrow binding of apo B lipoproteins to hepatic apo B/E receptors
- 1 adherence of monocytes to the endothelium
- ↑ monocyte activation (TLR2)

ORIGINAL ARTICLE

Elevated Triglyceride Level Is Independently Associated With Increased All-Cause Mortality in Patients With Established Coronary Heart Disease

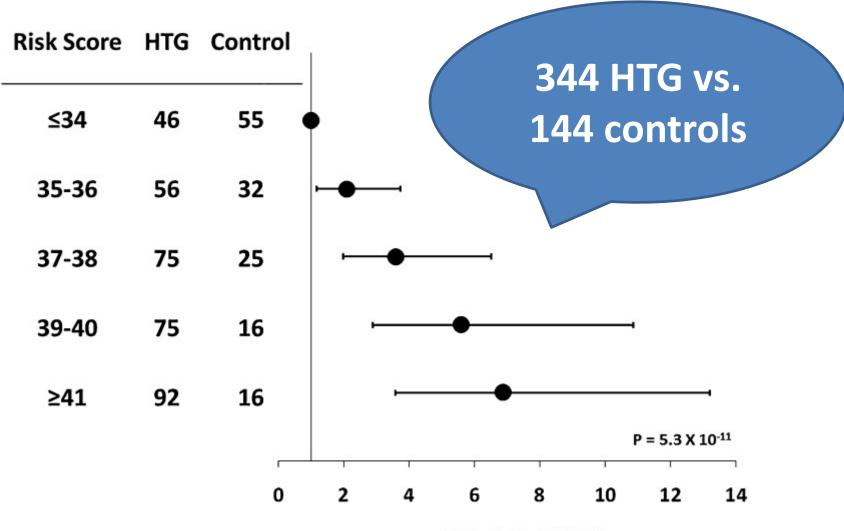

Twenty-Two-Year Follow-Up of the Bezafibrate Infarction Prevention Study and Registry

Editorial, see p 97

Robert Klempfner, MD, Aharon Erez, MD, Ben-Zekry Sagit, MD, Ilan Goldenberg, MD, Enrique Fisman, MD, Eran Kopel, MD, Nir Shlomo, MA, Ariel Israel, MD, and Alexander Tenenbaum, MD, PhD

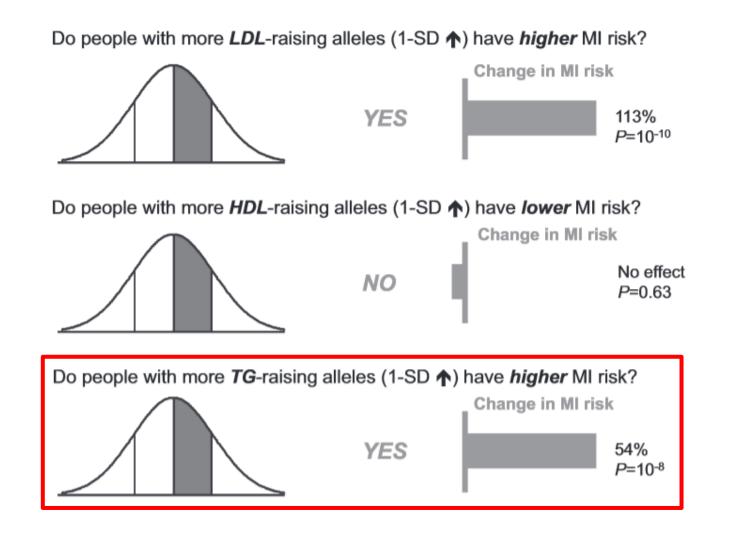
BACKGROUND— The independent association between elevated triglycerides and all-cause mortality among patients with established coronary heart disease is controversial. The aim of this study was to investigate this association in a large cohort of patients with proven coronary heart disease.

METHODS AND RESULTS— The study cohort comprised 15 355 patients who were screened for the Bezafibrate Infarction Prevention (BIP) trial. Twenty-two-year mortality data were obtained from the national registry. Patients were divided into 5 groups according to strata of fasting serum triglycerides: (1) low-normal triglycerides (<100 mg/dL); (2) high-normal triglycerides (100–149 mg/dL); (3) borderline hypertriglyceridemia triglycerides (150–199 mg/dL); (4) moderate hypertriglyceridemia triglycerides (200–499 mg/dL); (5) severe hypertriglyceridemia triglycerides (≥500 mg/dL). Age- and sex-adjusted survival was 41% in the low-normal


What are the Genetics of Hypertriglyceridemia?

- FCHL and FHTG are not single genes but polygenic traits.
- A number of SNPs have been identified that relate to hypertriglyceridemia.

Common DNA Polymorphisms Associated with Hypertriglyceridemia


CHR	Gene	SNP	Risk allele	OR (95% CI)	<i>P</i> -value
11	APOA5	rs964184	G	3.43 (2.72–4.31)	1.12×10^{-25}
2	GCKR	rs1260326	Т	1.64 (1.36–1.97)	1.97×10^{-7}
8	LPL	rs12678919	А	2.21 (1.52-3.22)	3.5×10^{-5}
8	TRIB1	rs2954029	А	1.50 (1.24–1.81)	3.8×10^{-5}
1	ANGPTL3	rs2131925	Т	1.51 (1.23–1.85)	1.0×10^{-4}
7	MLXIPL	rs7811265	А	1.63 (1.25–2.13)	3.3×10^{-4}
4	KLHL8	rs442177	Т	1.36 (1.13–1.64)	1.5×10^{-3}
10	CYP26A1	rs2068888	G	1.29 (1.08–1.55)	5.9×10^{-3}
19	CILP2	rs10401969	Т	1.72 (1.16–2.54)	6.8×10^{-3}
2	APOB	rs1042034	Т	1.28 (1.02–1.61)	0.032

Increased Genetic Burden of TG-Raising Alleles on Fasting Plasma TG: Canadian Heart Health Survey

Odds Ratio (95% CI)

Genetics, Lipids/Lipoproteins and Risk for Myocardial Infarction

Major Secondary Causes of Hypertriglyceridemia

Disease States and Risk Factors

- •Diabetes Mellitus, Insulin Resistance
- •Obesity
- •Alcohol
- •Chronic Kidney Disease
- •Nephrotic syndrome
- •Hypothyroidism
- •HIV
- •Hepatocellular disease
- Inflammatory diseases

Major Secondary Causes of Hypertriglyceridemia

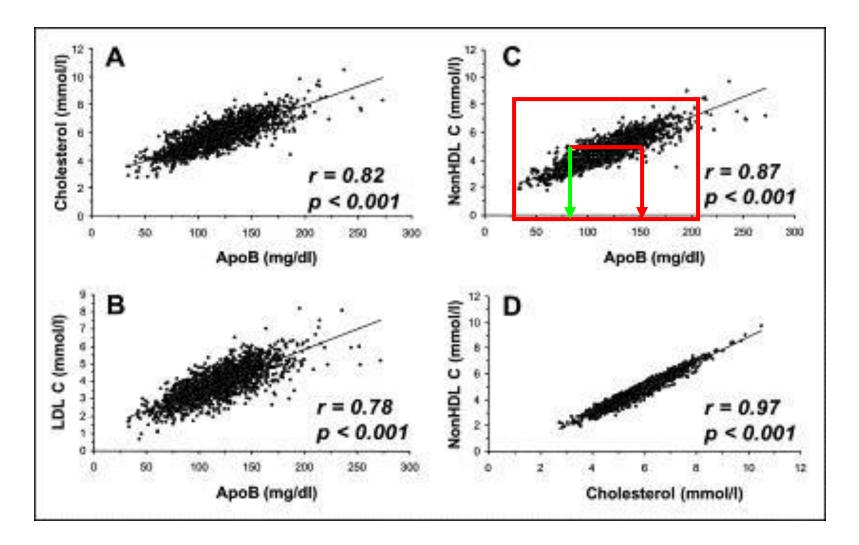
<u>Drugs</u>

- Oral estrogens
- Bile-acid sequestrants
- Antiretroviral regimens
- especially for HIV disease
- Phenothiazines 2nd-generation
- Nonselective beta-blockers
- Thiazide diuretics
- Loop diuretics
- Glucocorticoids
- Immunosuppressants
- Tamoxifen
- Isotretinoin

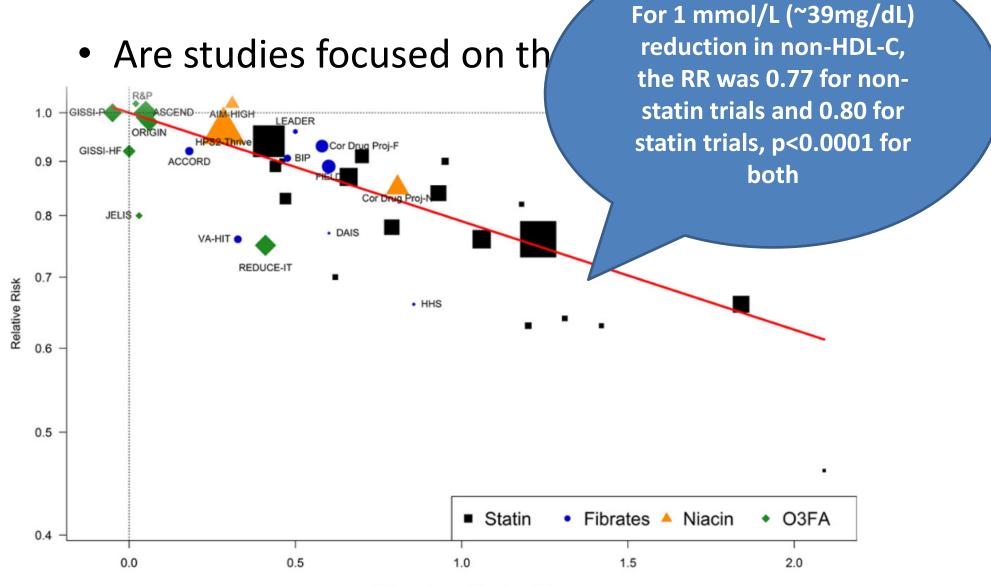
Is apo B useful in predicting CVD risk in patients with hypertriglyceridemia?

One apo B molecule/particle

Assesses potentially atherogenic particle number


Most apo B is in LDL

Multivariable Mendelian Randomization of ApoB, LDL-C & TG with CHD Risk


Analysis	Variables	Odds Ratio for CHD (95% CI)	P Value
Association of ApoB with risk of CHD	АроВ	0.770 (0.760-0.781)	1.42E-170
Association of LDL-C with risk of CHD	LDL-C	0.846 (0.833-0.858)	8.16E-77
Association of triglycerides with risk of CHD	Triglycerides	0.815 (0.785-0.846)	1.37E-18
Association of LDL-C and triglycerides with risk of CHD included in same	LDL-C	0.862 (0.849-0.875)	6.92E-65
model	Triglycerides	0.876 (0.850-0.902)	1.36E-14
Association of LDL-C, triglycerides, and ApoB with risk of CHD included in same	АроВ	0.761 (0.723-0.798)	7.51E-20
model	LDL-C	1.010 (0.967-1.055)	.186
	Triglycerides	1.014 (0.965-1.065)	.189
Association of LDL-C, ApoB with risk of CHD included in same model	АроВ	0.762(0.738-0.787)	1.27E-36
	LDL-C	1.009(0.977-1.042)	0.140
Association of triglycerides, and ApoB with risk of CHD included in same model	АроВ	0.765(0.751-0.779)	1.20E-105
inder	Triglycerides	1.011(0.975-1.048)	0.161

Ferrence BA et al, JAMA 321:1, 2019

Correlations Between Apo B, Cholesterol, LDL Cholesterol and Non-HDL Cholesterol

CVD Risk: Triglycerides vs. Non-HDL-C

Difference in non-HDLc (mmol/L)

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

fag

Management of Hypertriglyceridemia

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu

Goals

- Discuss problems with the definition, related prevalence and causes of hypertriglyceridemia.
- Provide updates on if/how hypertriglyceridemia relates to atherosclerotic CVD using informative CVOTs.
- Evaluate strategies for triglyceride management:
 - Moderate
 - Severe
- Summarize HDL-C science and management.

Lifestyle Recommendations for Patients with Hypertriglyceridemia

- Heart healthy lifestyle
 - -Mediterranean-style or DASH diet
 - When implemented, additional simple carbohydrate restriction is not necessary
 - Regular physical activity
 - 3 to 4 sessions a week
 - lasting on average 40 min per session
 - involving moderate-to-vigorous intensity physical activity
 - -Weight loss
 - 5-10%

Range of Triglyceride Lowering with Drugs

- Fibrates 20-45%
- Nicotinic acid 10-30%
- Omega-3 fatty acids 15-35%
- Statins 0-35%
 - Low end minimal or no effect
 - High end mod to high dose

Major Fibrate CVD Outcome Trials

Study (Year)	N	Study drug	Comparator	Primary Outcome	Results	
HHS (1987)	4081	Gemfibrozil	Placebo	Fatal or nonfatal MI or cardiac death	34% reduction	*
VA-HIT (1999)	2531	Gemfibrozil	Placebo	Nonfatal MI or cardiac death	22% reduction	*
BIP (2000)	3090	Bezafibrate	Placebo	Fatal or nonfatal MI or sudden death	9.4% reduction	NS
LEADER (2002)	1568	Bezafibrate	Placebo	CHD or stroke	4% reduction	NS
FIELD (2005)	9795	Fenofibrate	Placebo	CHD death or nonfatal MI	11% reduction	NS
ACCORD (2010)	5518	Simvastatin + Fenofibrate	Simvastatin	Nonfatal MI, nonfatal stroke, CVD death	8% reduction	NS
ACCORDION (2017)	4644	Simvastatin + Fenofibrate	Simvastatin	Nonfatal MI, nonfatal stroke, CVD death	7% reduction	NS

Hazard Ratios for the Primary Outcome in Pre-Specified Subgroups: ACCORD, 14 Year Data

Subgroup	Fenofibrate	Placebo	Heneral vettice (OI		<i>P</i> for interaction
	% of events (r	no. in group)	Hazard ratio (95	5% (I)	
HDL					
<35	197/956 (20.61)	224/903 (24.81)	0.81 (0.67-0.98)		.20
35-40	159/852 (18.66)	157/858 (18.30)	1.01 (0.81-1.26)		
≥41	150/916 (16.38)	155/959 (16.16)	1.02 (0.81-1.27)		
Triglycerides					
<129	146/879 (16.61)	186/930 (20.00)	0.83 (0.67-1.03)		.37
129-203	171/918 (18.63)	160/908 (17.62)	1.04 (0.84-1.29)		
≥204	189/927 (20.39)	190/882 (21.54)	0.93 (0.76-1.13)		
Dyslipidemia					
No	407/2242 (18.15)	415/2266 (18.31)	0.99 (0.86-1.13)	_	.05
Triglycerides >204 and HDL-C <34	99/482 (20.54)	121/454 (26.65)	0.73 (0.56-0.95)	_	
Hemoglobia A _{1c}					
<8.1	236/1313 (17.97)	250/1322 (18.91)	0.93 (0.78-1.11)		.975
≥8.1	271/1421 (19.07)	289/1408 (20.53)	0.93 (0.79-1.10)		
				0.5 1.0	2.0

Fenofibrate better

Placebo better

Pemafibrate to Reduce Cardiovascular OutcoMes by Reducing Triglycerides IN patiENts With diabeTes (PROMINENT)

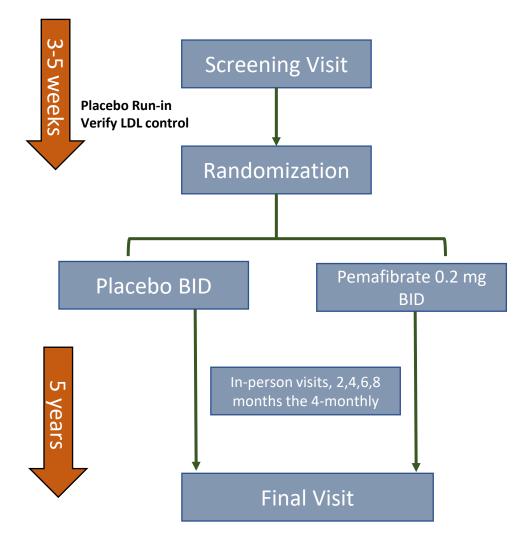
The primary objective of the study is to determine whether pemafibrate administered twice daily will delay the time to first occurrence of any component of the clinical composite endpoint of:

- Nonfatal Myocardial Infarction
- Nonfatal ischemic stroke
- Hospitalization for unstable angina requiring unplanned coronary revascularization; or
- CVD death
- Condition or disease: T2DM, dyslipidemia

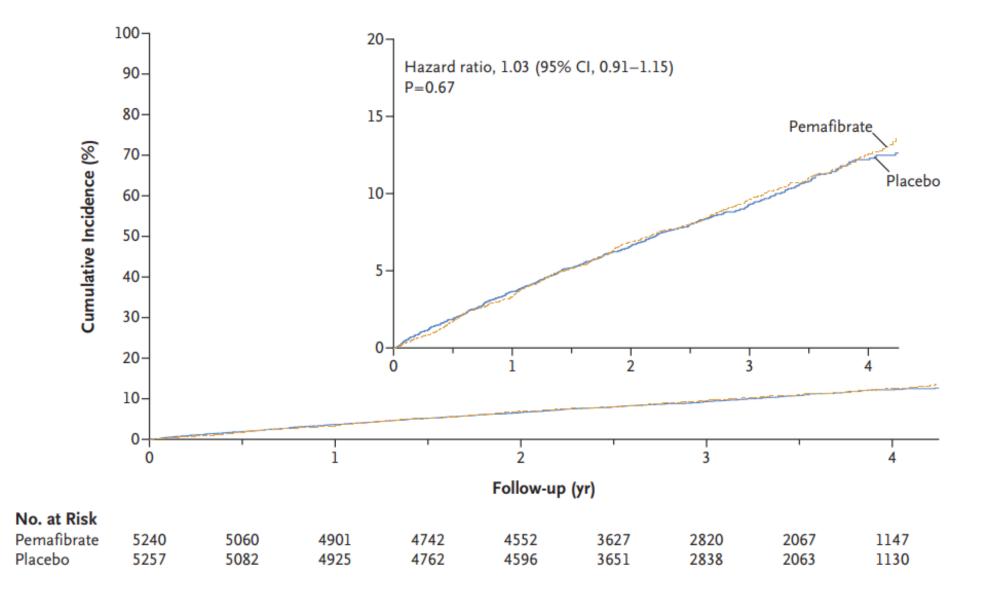
PROMINENT Study Design

Men and Women with T2D (10,000 participants and 24 countries)

TG 200-499 mg/dl (2.26-5.64 mM) and HDL ≤ 40mg/dl (1.03mM) Moderate-high intensity Statin therapy or LDL-C control (≤70mg/dl other therapy or ≤100 mg/dl if statin intolerant) 1/3 Primary Prevention, 2/3 Secondary Prevention)

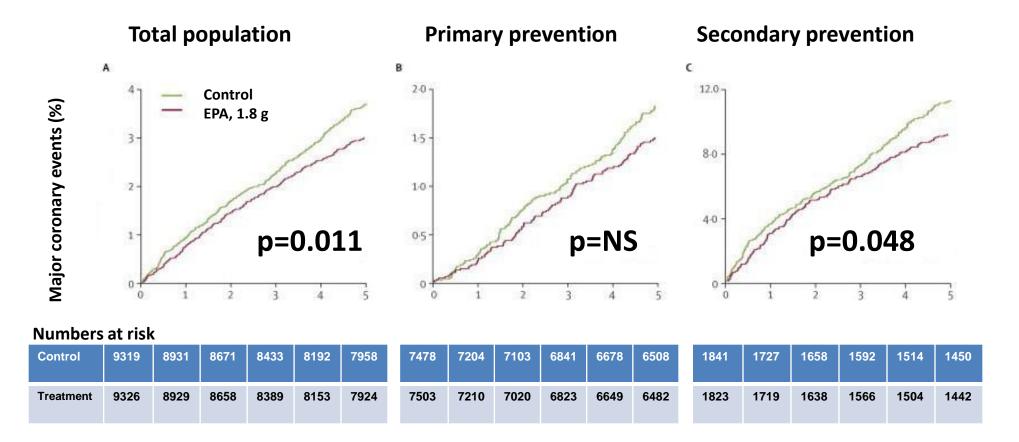

ENDPOINTS

Event Driven: 1092 Primary endpoints, 200 in females


Primary Endpoint (MACE +)

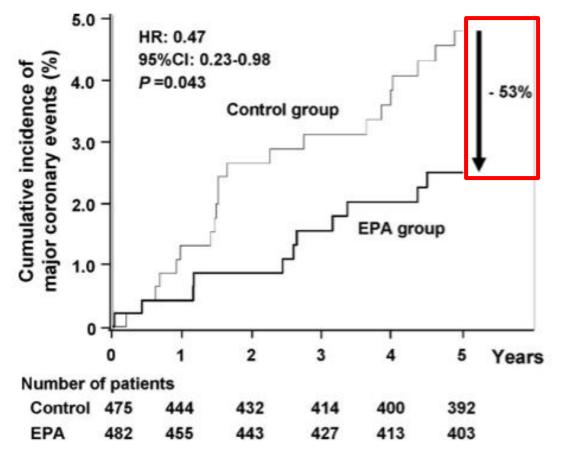
MI, Ischemic stroke or unstable angina requiring unplanned revascularization, CV death

Secondary/ Tertiary Points: all cause mortality, any coronary revascularization, HF, total stroke, retinopathy, nephropathy, glycemic control, PAD, biomarkers, QOL



PROMINENT Trial Results

Das Pradham A et al, NEJM 387:1923, 2022


JELIS Study: Major Coronary Events

N= 18,645; baseline total cholesterol >250 mg/dl; statin ±1.8 g of EPA

JELIS Study:

CVD Risk Reduction of EPA in Patients with ↑ TG and ↓ HDL-C

Primary Prevention of CVD with High Dose Omega-3 Fatty Acids

REDUCE-IT: Baseline TG 135-500 mg/dL) STRENGTH: Baseline TG 180-500 mg/dL

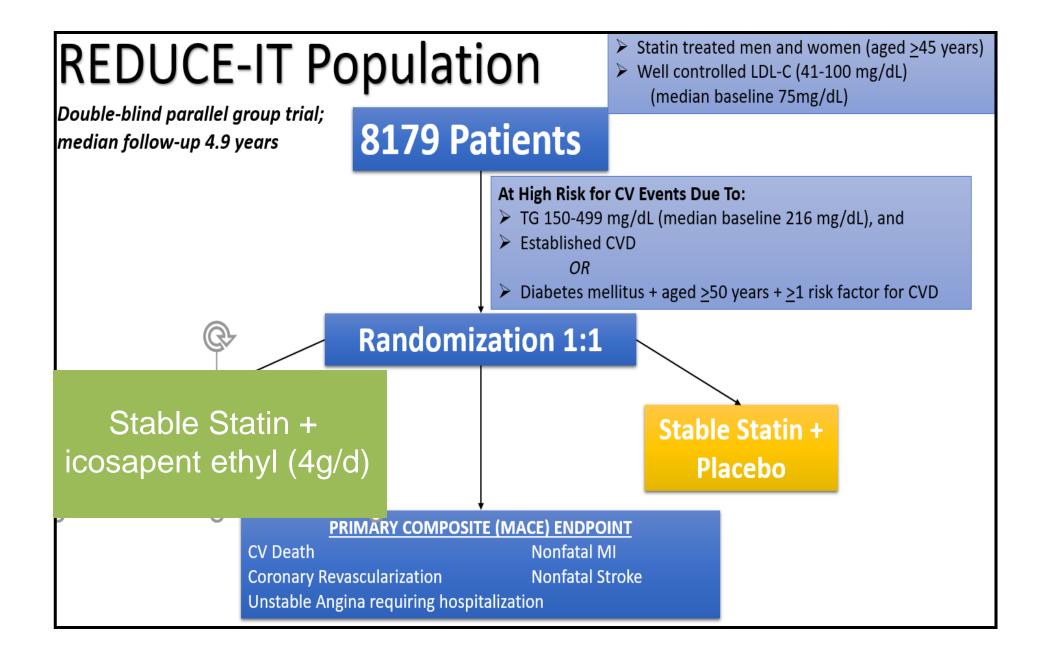
Trial	Drug	Size (n)	Primary Outcome
REDUCE-IT	Icosapent ethyl	8179	5-point MACE
STRENGTH	Omega-3 carboxylic acids	13,086	5-Point MACE

All patients on statins

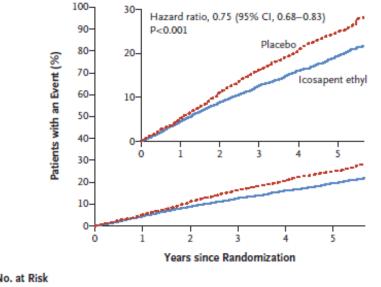
Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia

Deepak L. Bhatt, M.D., M.P.H., P. Gabriel Steg, M.D., Michael Miller, M.D., Eliot A. Brinton, M.D., Terry A. Jacobson, M.D., Steven B. Ketchum, Ph.D., Ralph T. Doyle, Jr., B.A., Rebecca A. Juliano, Ph.D., Lixia Jiao, Ph.D., Craig Granowitz, M.D., Ph.D., Jean-Claude Tardif, M.D., and Christie M. Ballantyne, M.D., for the REDUCE-IT Investigators*

ABSTRACT

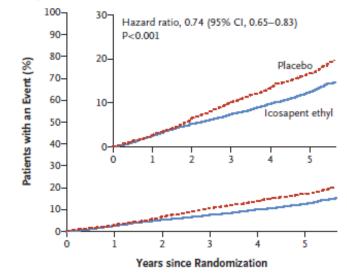

BACKGROUND

Patients with elevated triglyceride levels are at increased risk for ischemic events. Icosapent ethyl, a highly purified eicosapentaenoic acid ethyl ester, lowers triglyceride levels, but data are needed to determine its effects on ischemic events.


METHODS

We performed a multicenter, randomized, double-blind, placebo-controlled trial involving patients with established cardiovascular disease or with diabetes and other risk factors, who had been receiving statin therapy and who had a fasting triglyceride level of 135 to 499 mg per deciliter (1.52 to 5.63 mmol per liter) and a low-density lipoprotein cholesterol level of 41 to 100 mg per deciliter (1.06 to 2.59 mmol per liter). The patients were randomly assigned to receive 2 g of icosapent ethyl twice daily (total daily dose, 4 g) or placebo. The primary

From Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School, Boston (D.L.B.); FACT (French Alliance for Cardiovascular Trials), Département Hospitalo-Universitaire FIRE (Fibrose, Inflammation, and Remodeling), Assistance Publique–Hôpitaux de Paris, Hôpital Bichat, Université Paris-Diderot, INSERM Unité 1148, Paris (P.G.S.); National Heart and Lung Institute, Imperial College, Royal Brompton Hospital, London (P.G.S.); the Department of Medicine, University of Maryland School of

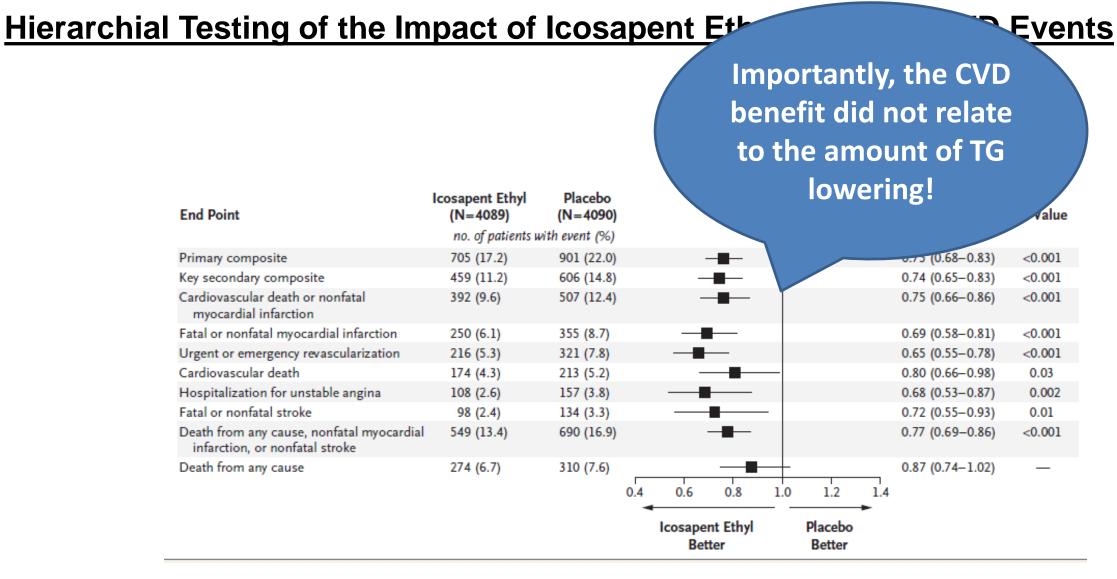


A Primary End Point

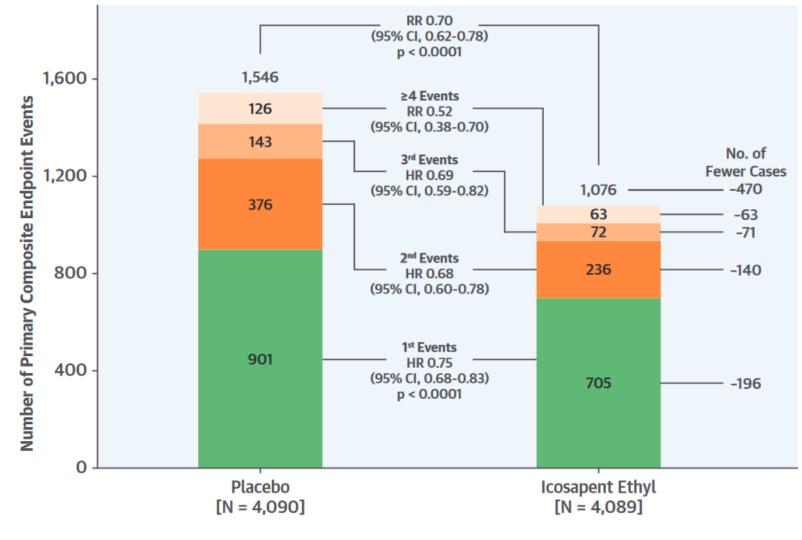
No. at Risk						
Placebo	4090	3743			2347	1358
Icosapent ethyl	4089	3787	3431	2951	2503	1430

B Key Secondary End Point

No. at Risk						
Placebo	4090	3837	3500	3002	2542	1487
Icosapent ethyl	4089	3861	3565	3115	2681	1562


REDUCE-IT: Impact of Icosapent Ethyl on Major CVD Events

REDUCE-IT:


Hierarchial Testing of the Impact of Icosapent Ethyl on Major CVD Events

End Point	Icosapent Ethyl (N=4089)	Placebo (N=4090)	Hazard	Ratio (95% CI)	P Value
	no. of patients w	ith event (%)			
Primary composite	705 (17.2)	901 (22.0)		0.75 (0.68-0.83)	< 0.001
Key secondary composite	459 (11.2)	606 (14.8)		0.74 (0.65-0.83)	< 0.001
Cardiovascular death or nonfatal myocardial infarction	392 (9.6)	507 (12.4)		0.75 (0.66–0.86)	<0.001
Fatal or nonfatal myocardial infarction	250 (6.1)	355 (8.7)		0.69 (0.58-0.81)	< 0.001
Urgent or emergency revascularization	216 (5.3)	321 (7.8)		0.65 (0.55-0.78)	< 0.001
Cardiovascular death	174 (4.3)	213 (5.2)		0.80 (0.66-0.98)	0.03
Hospitalization for unstable angina	108 (2.6)	157 (3.8)		0.68 (0.53-0.87)	0.002
Fatal or nonfatal stroke	98 (2.4)	134 (3.3)		0.72 (0.55-0.93)	0.01
Death from any cause, nonfatal myocardial infarction, or nonfatal stroke	549 (13.4)	690 (16.9)		0.77 (0.69–0.86)	<0.001
Death from any cause	274 (6.7)	310 (7.6)	.4 0.6 0.8 1.0	- 0.87 (0.74–1.02) 0 1.2 1.4	_
			Icosapent Ethyl Better	Placebo Better	

REDUCE-IT:

REDUCE-IT: First and Subsequent CVD Events

Reduced Dataset Event No. ■ 1st ■ 2nd ■ 3rd ■ ≥4

Recent Cardiovascular Outcome Trials with Omega-3 Fatty Acids

	JELIS (18,645)	REDUCE-IT (8179)	STRENGTH (13,078)
Population*	Hypercholesterolemic	High cardiovascular risk, Elevated TG	High cardiovascular risk, Elevated TG, low HDL
Formulation	IPE (1.8 g/d EPA)	IPE (4 g/d EPA)	EPA/DHA carboxylic acids (4 g/d)
Baseline median TG (mg/dL)	153	216	240
Baseline EPA (μ g/mL)	97	26.1	21.0
Achieved EPA (μ g/mL)	169	144	89.6
Increase in achieved EPA levels (%)	70	394	269
TG lowering (%)	9	17	19
Primary endpoint	Major coronary events	Composite of cardiovascular death, nonfatal MI, nonfatal stroke, coronary revasculariza- tion, or unstable angina	Composite of cardiovascular death, nonfatal MI, nonfatal stroke, coronary revasculariza- tion, or hospitalization for unstable angina
HR, 95% CI of primary endpoint	0.81, 0.69-0.95 (<i>P</i> = .011)	0.75, 0.68-0.83 (<i>P</i> = .00000001)	0.99, 0.90-1.09 (<i>P</i> = .84)

Atheroprotective Effects of EPA

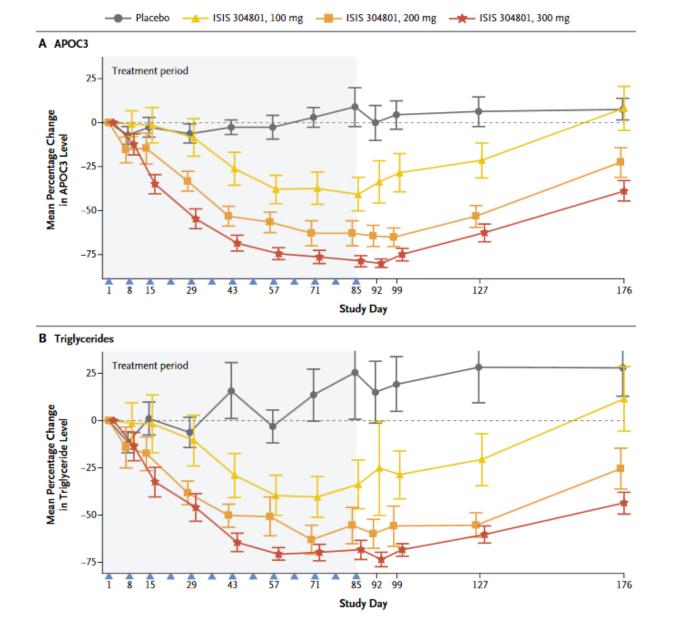
EPA Increases	Endothelial function Nitric oxide bioavailability Membrane lipid stability Vasodilation Free radical scavenging	EPA/AA ratio IL-10 Bioactive lipid metabolites SPMs	Fibrous cap thickness Lumen diameter Plaque stability Regression of low attenuation plaque
Plaque Progression	Endothelial Dysfunction/ Oxidative Stress	Inflammation/ Plaque Growth	Unstable Plaque
EPA Decreases	Cholesterol crystalline domains Ox-LDL RLP-C ICAM-1 Adhesion of monocytes Arterial stiffness	Macrophage foam cells IL-6 hsCRP Lp-PLA ₂ MMPs ApoC-III	Plaque volume (low attenuation, fibrofatty, non-calcified) Thrombosis Platelet activation

ESC/EAS Guidelines: Treatment Targets and Goals for CVD Prevention

Non-HDL-C	Non-HDL-C secondary goals are <2.2, 2.6, and 3.4 mmol/L (<85, 100, and 130 mg/dL) for very-high-, high-, and moderate-risk people, respectively.
АроВ	ApoB secondary goals are <65, 80, and 100 mg/dL for very-high-, high-, and moderate-risk people, respectively.
Triglycerides	No goal, but <1.7 mmol/L (<150 mg/dL) indicates lower risk and higher levels indicate a need to look for other risk factors.

Drug treatments of patients with hypertriglyceridaemiaIn high-risk (or above) patients with TG between 1.5 and 5.6 mmol/L (135 - 499 mg/dL) despite statin treatment, n-3 PUFAs (icosapent ethyl 2 2g/day) should be considered in combination with statins.

www.cardiometabolichealth.org

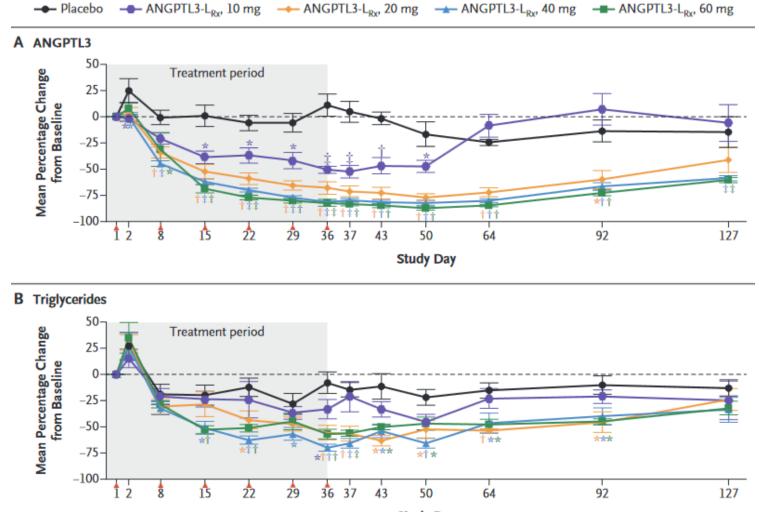

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

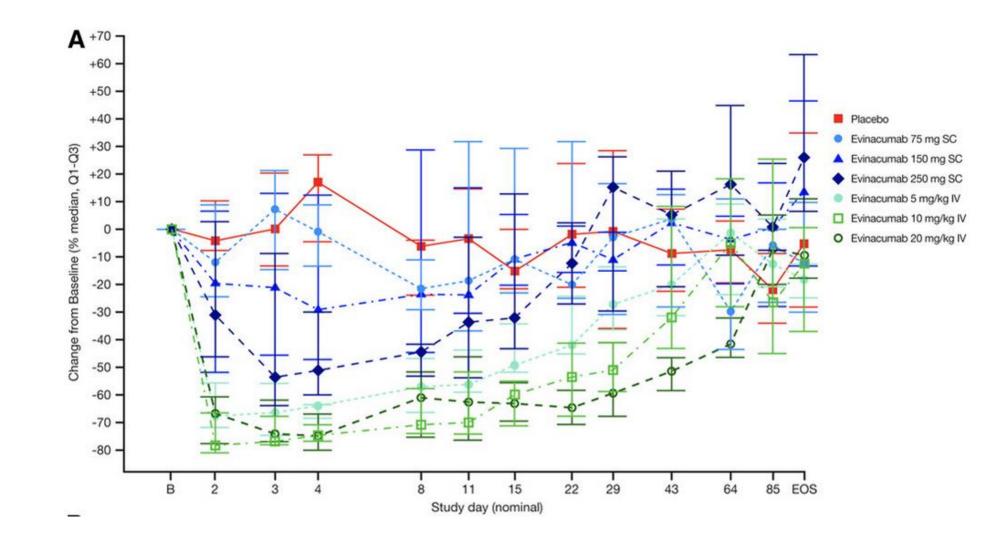
New Kids on the Block for Triglyceride Lowering

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu

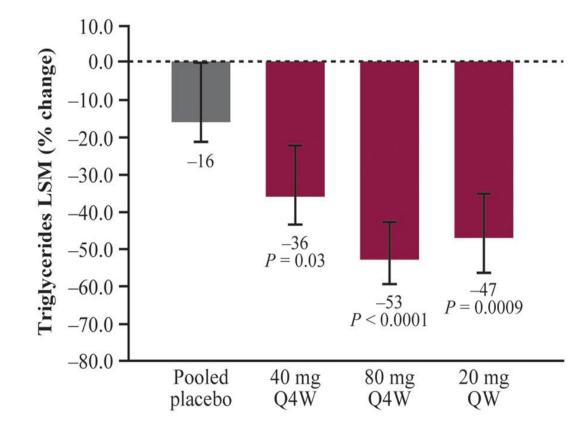


Antisense Apo-CIII (volanesorsen) and Plasma Triglycerides

Angiopoietin-Like Proteins are a Genetically Validated Triglyceride Target


- ANGPTL3, 4, 8 are important modulators of lipid metabolism.
- ANGPTL3 is a circulating protein synthesized in the liver that modulates lipid-lipoprotein metabolism and has pleiotropic functions
- The ANGPTL3 coding gene (*ANGPTL3*) is specifically expressed in the hepatocytes and its expression is regulated by LXR.
- ANGPTL3 undergoes cleavage which is mediated by PCSK3 and PPCSk6 and phosphorylation
- The effect of ANGPTL3 on LPL activity is more pronounced post-prandially due to its interaction with ANGPTL8

Antisense ANGPTL3 and Plasma Triglycerides

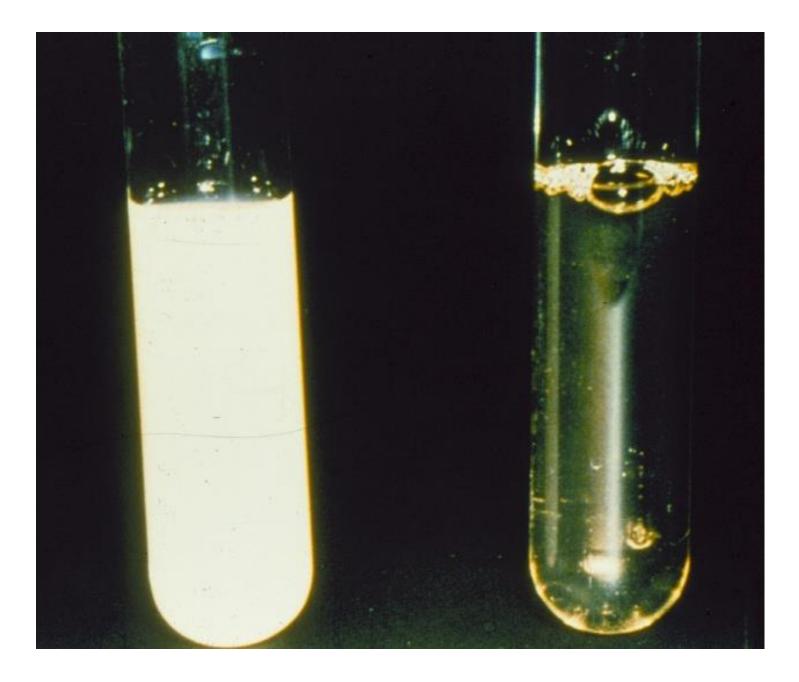


Study Day

Evinacumab: Percent Median (Q1–Q3) Change in Plasma Triglycerides

GalNAc3-conjugated Antisense ANGPTL3 (vupanorsen) and Plasma Triglycerides

www.cardiometabolichealth.org

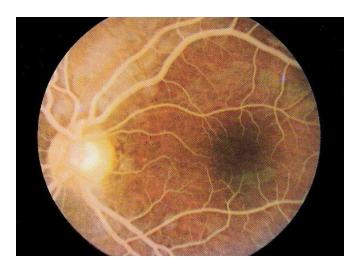

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

fag

Management of Severe Hypertriglyceridemia

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu

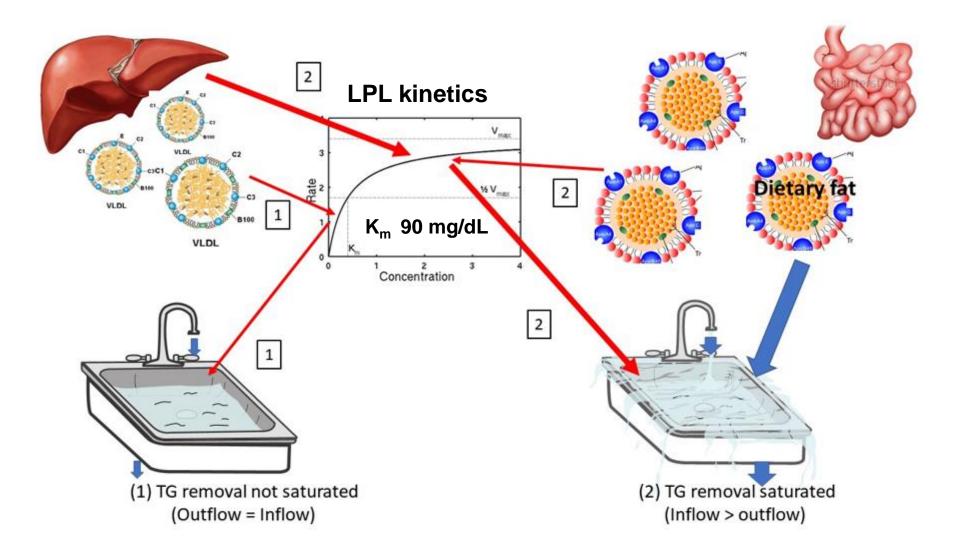


Genetics of Severe Hypertriglyceridemia

Familial Chylomicronemia

- All etiologies do not require secondary disorders
- Pancreatitis risk
- No premature CHD
- Eruptive xanthoma
- Lipemia retinalis
- LPL deficiency
 - Rare: ~1/1,000,000
 - French Canadians: ~1/40,000
 - South Africans: ~1/40,000
- Apo CII deficiency
- LMF-1 deficiency
- GPIHBP1 deficiency

Most Severe Hypertriglyceridemia


(Type 5 Hyperlipoproteinemia)

Genetic Hypertriglyceridemia

Acquired Secondary Factor(s)

Chait A, Brunzell JD Metabolism 32:209, 1983

Triglyceride Clearance is Saturable

Dietary Treatment of Severe Hypertriglyceridemia

- TG >1000 mg/dl: < 5% fat; no ETOH
 - ? D/C all TG-lowering Rx
 - < 5% fat \rightarrow ~25% TG \downarrow daily in saturation kinetics
 - Fasting TG q 3 days until <1000 mg/dl
 - Restart Rx when TG <1000 mg/dl
 - If TG do not reach <1000 mg/dl, hospitalize & control diet

Dietary Treatment of Moderate Hypertriglyceridemia

- TG = 500-1000 mg/dl:
 - 20-35% fat
 If TG ↑, ↓ CHO and ↑ PUFA & MUFA
 ± ETOH when <400 mg/dl
- Fiber: >25 g daily
- Sucrose in moderation

Hypertriglyceridemia: What's the Bottom Line?

- Lower fasting TG to <500 mg/dl
 - $-\downarrow$ pancreatitis risk
- Use current guidelines to reduce LDL-C
- Consider Apo B as an indicator of CVD risk in patients with LDL-C <100-130 mg/dL
- In patients with fasting TG >200 mg/dl \pm HDL-C <35 mg/dl
 - Consider a fibrate or omega-3 fatty acids
- Icosapent ethyl in most high CVD risk patients?
 - There's now an FDA indication

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Moderate Hypertriglyceridemia Patient Case

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu This 54-year-old woman with strong FHx of T2DM and CVD has new onset T2DM, treated hypertension, dyslipidemia on statin and is referred for evaluation of cardiometabolic risk for CVD. She has known hypothyroidism and obstructive sleep apnea on CPAP.

No tobacco, rare alcohol, on South Beach diet, almost no physical activity, works at a desk job.

Lisinopril 20 mg daily Levothyroxine 100 µg daily Atorvastatin 40 mg daily Metformin, 500 mg bid This 54-year-old woman with strong FHx of T2DM and CVD has new onset T2DM, treated hypertension, dyslipidemia on statin and is referred for evaluation of cardiometabolic risk for CVD.

<u>PE:</u>

Weight 179 lb., WC – 96 cm BMI 29.5 kg/m² BP 142/82 No xanthomas No carotid bruits, cardiac murmurs Liver 8 cm Dorsalis pedis pulses 1+ bilaterally

Labs:

Cholesterol – 210 mg/dL TG – 340 mg/dL HDL-C – 38 mg/dL LDL-C – 104 mg/dL AST,ALT - normal Creatinine 1.0 mg/dL UAC – 75µg/g HbA1c – 7.4% TSH – 1.6 mU/L

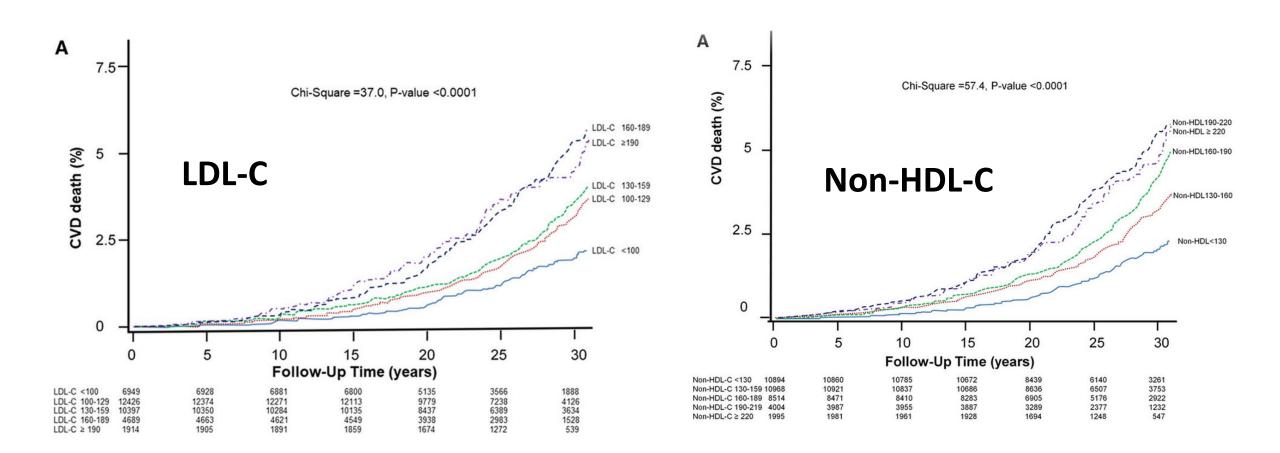
• Should TG of 340 mg/dL be treated?

Range of Triglyceride Lowering with Drugs

- Fibrates 20-45%
- Omega-3 fatty acids 15-35%
- Nicotinic acid 10-30%
- Statins

0-35%

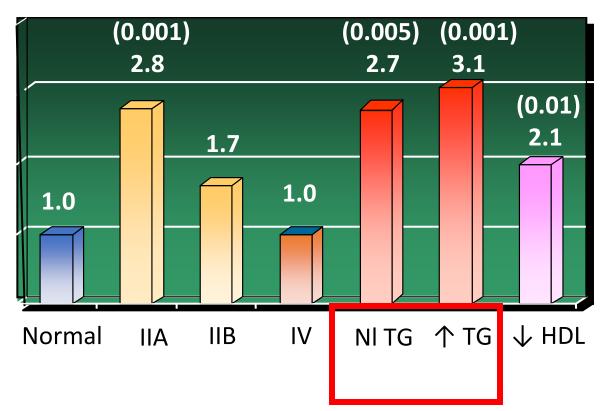
- Low end minimal or no effect
- High end mod to high dose

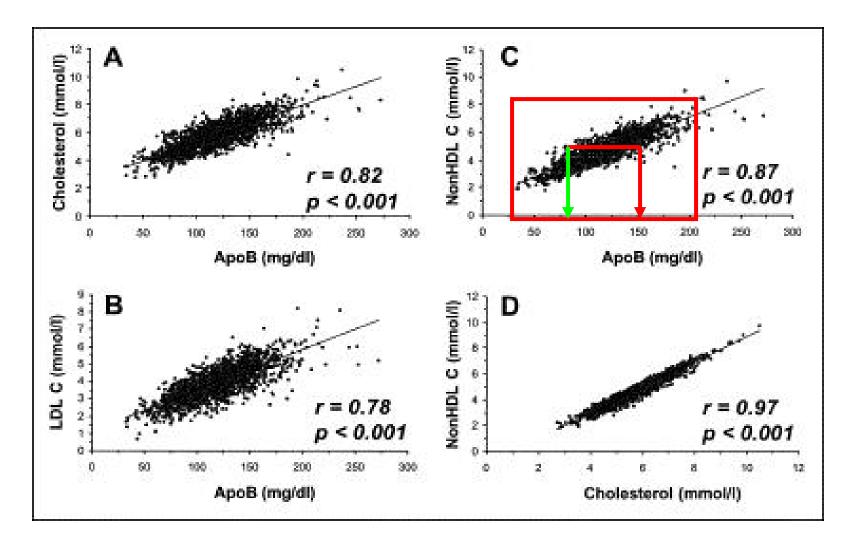

Efficacy of TG Lowering Drug Classes on CVD Outcomes in RCTs

		-		
	Active treatment	Placebo	Relative risk	Absolute effects (events/1000)
Fibrate				
CHD mortality	904/21 886	1032/23 536	0.92 (0.81-1.04)	-4 (-8 to +2)
Nonfatal MI	1104/21 896	1574/23 549	0.80 (0.72–0.96)	−14 (−19 to −3)
Stroke	610/20 784	672/22 404	1.01 (0.90-1.13)	0 (-3 to +4)
Niacin				
CHD mortality	565/16 795	852/18 034	0.93 (0.76-1.12)	-3 (-11 to +6)
Nonfatal MI	645/17 030	921/18 271	0.85 (0.72-1.01)	-8 (-14 to +1)
Stroke	620/16 788	797/18 020	0.96 (0.75-1.22)	-2 (-11 to +10)
Omega-3 (low dose)				
CHD mortality	1570/28 947	1631/28 940	0.96 (0.90-1.02)	-2 (-5 to +1)
Nonfatal MI	816/31 094	807/30 996	0.90 (0.78-1.05)	-2 (-6 to +1)
Stroke	707/31 094	673/30 996	1.08 (0.94-1.24)	+2 (-1 to +5)
Omega-3 (high dose)				
CHD mortality	513/10 809	543/11 007	0.96 (0.86-1.08)	-2 (-7 to +4)
Nonfatal MI	451/10 809	557/11 007	0.84 (0.73–0.93)	−8 (−14 to −4)
Stroke	241/10 659	259/10 657	0.93 (0.78–1.11)	-2 (-5 to +3)

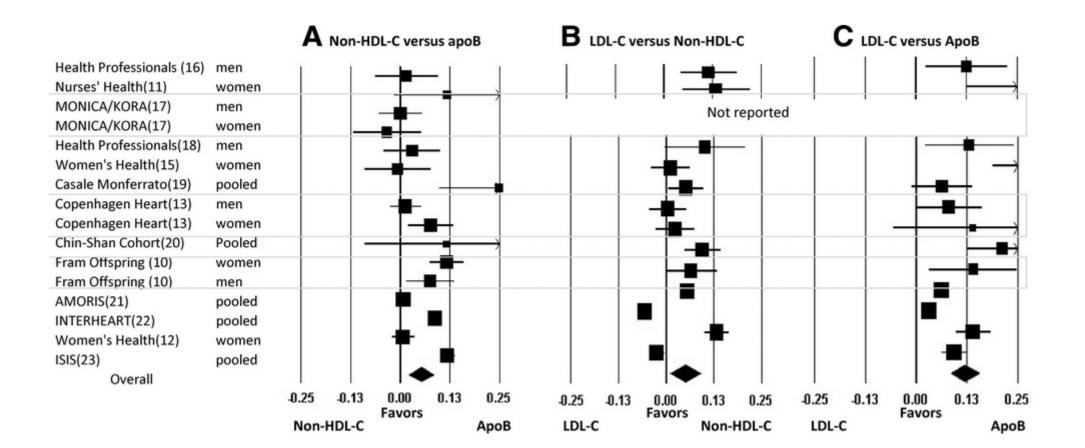
- Should TG of 340 mg/dL be treated?
- What about non-HDL-C vs. LDL-C as a better goal for treatment?

Kaplan–Meier Curve of LDL-C and non–HDL-C and CVD Mortality




- Should TG of 340 mg/dL be treated?
- What about non-HDL-C vs. LDL-C as a better goal for treatment?
- When Is apo B useful and isn't it the same as non-HDL-C?

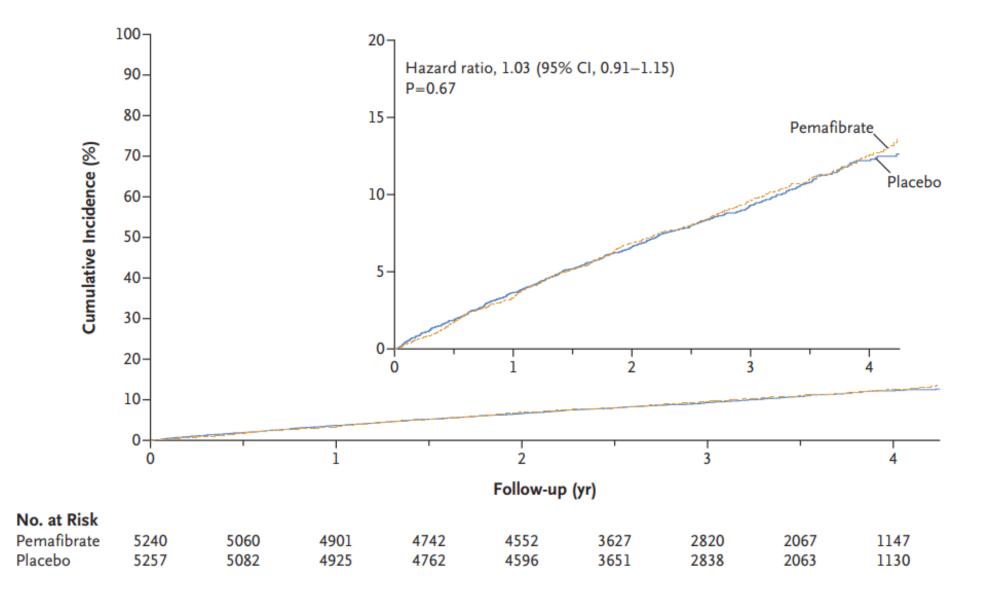
Odds Ratios for the Development of CHD: Lipid and Lipoprotein Phenotypes


Odds are adjusted for age, smoking, alcohol, blood pressure, gender, and medications

Correlations Between Apo B, Cholesterol, LDL Cholesterol and Non-HDL Cholesterol

Standardized Vascular RRRs Comparison of Non-HDL-C, Apo B and LDL-C from 12 Independent Epidemiological Studies Reporting RRRs for Both Apo B and non-HDL-C

- Should TG of 340 mg/dL be treated?
- What about non-HDL-C vs. LDL-C as a better goal for treatment?
- When Is apo B useful and isn't it the same as non-HDL-C?
- What have the fibrate trials told us?


Major Fibrate CVD Outcome Trials

Study (Year)	Ν	Study drug	Comparator	Primary Outcome	Results	
HHS (1987)	4081	Gemfibrozil	Placebo	Fatal or nonfatal MI or cardiac death	34% reduction	*
VA-HIT (1999)	2531	Gemfibrozil	Placebo	Nonfatal MI or cardiac death	22% reduction	*
BIP (2000)	3090	Bezafibrate	Placebo	Fatal or nonfatal MI or sudden death	9.4% reduction	NS
LEADER (2002)	1568	Bezafibrate	Placebo	CHD or stroke	4% reduction	NS
FIELD (2005)	9795	Fenofibrate	Placebo	CHD death or nonfatal MI	11% reduction	NS
ACCORD (2010)	5518	Simvastatin + Fenofibrate	Simvastatin	Nonfatal MI, nonfatal stroke, CVD death	8% reduction	NS
ACCORDION (2017)	4644	Simvastatin + Fenofibrate	Simvastatin	Nonfatal MI, nonfatal stroke, CVD death	7% reduction	NS

Fibrate Outcome Studies in High TG Subgroups

	Trial (Drug)	Primary Endpoint: Entire Cohort (p-value)	Lipid Subgroup Criterion	Primary Endpoint: HTG Subgroup (p-value)
Pre-Statin Era	HHS (Gemfibrozil)	-34% (0.02)	TG > 204 mg/dL LDL-C/HDL-C > 5.0	-71% (0.005)
Some Statin Use	FIELD (Fenofibrate) (no statins at entry)	-11% (0.16)	TG <u>></u> 204 mg/dL HDL-C < 42 mg/dL	-27% (0.07)
Statin Add-On	ACCORD (Fenofibrate/simva)	-8% (0.32)	TG <u>></u> 204 mg/dL HDL-C <u><</u> 34 mg/dL	-31% (0.057)
	AIM-HIGH Niacin ER/ Simvastatin ± EZE	+2% (0.80)	TG ≥198 mg/dL HDL-C ≤ 33 mg/dL	-26% (0.073)

PROMINENT Trial Results

Das Pradham A et al, NEJM 387:1923, 2022

Questions:

- Should TG of 340 mg/dL be treated?
- What about non-HDL-C vs. LDL-C as a better goal for treatment?
- When is apo B useful and isn't it the same as non-HDL-C?
- What have the fibrate trials told us?
- Are high dose omega-3 fatty acid trials any different?

Major Omega-3 Fatty Acid CVD Outcome Trials

	JELIS (18,645)	REDUCE-IT (8179)	STRENGTH (13,078)
Population*	Hypercholesterolemic	High cardiovascular risk, Elevated TG	High cardiovascular risk, Elevated TG, low HDL
Formulation	IPE (1.8 g/d EPA)	IPE (4 g/d EPA)	EPA/DHA carboxylic acids (4 g/d)
Baseline median TG (mg/dL)	153	216	240
Baseline EPA (μ g/mL)	97	26.1	21.0
Achieved EPA (μ g/mL)	169	144	89.6
Increase in achieved EPA levels (%)	70	394	269
TG lowering (%)	9	17	19
Primary endpoint	Major coronary events	Composite of cardiovascular death, nonfatal MI, nonfatal stroke, coronary revasculariza- tion, or unstable angina	Composite of cardiovascular death, nonfatal MI, nonfatal stroke, coronary revasculariza- tion, or hospitalization for unstable angina
HR, 95% CI of primary endpoint	0.81, 0.69-0.95 (P = .011)	0.75, 0.68-0.83 (P = .00000001)	0.99, 0.90-1.09 (P = .84)

CI = confidence interval; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; HDL = high-density lipoprotein; HR = hazard ratio; IPE = icosapent ethyl; MI = myocardial infarction; TG = triglyceride.

*Statin use was 100%.

ESC/EAS Guidelines: Treatment Targets and Goals for CVD Prevention

Non-HDL-C	Non-HDL-C secondary goals are <2.2, 2.6, and 3.4 mmol/L (<85, 100, and 130 mg/dL) for very-high-, high-, and moderate-risk people, respectively.
АроВ	ApoB secondary goals are <65, 80, and 100 mg/dL for very-high-, high-, and moderate-risk people, respectively.
Triglycerides	No goal, but <1.7 mmol/L (<150 mg/dL) indicates lower risk and higher levels indicate a need to look for other risk factors.

Drug treatments of patients with hypertriglyceridaemiaIn high-risk (or above) patients with TG between 1.5 and 5.6 mmol/L (135 - 499 mg/dL) despite statin treatment, n-3 PUFAs (icosapent ethyl 2 2g/day) should be considered in combination with statins.

Questions:

- Should TG of 340 mg/dL be treated?
 - Evidence to indicate that TG lowering is beneficial is not convincing, but for patients who are at high risk or have ASCVD, icosapent ethyl should be considered.
- What about non-HDL-C vs. LDL-C as a better goal for treatment?
 - In patients with high TG/low HDL-C, non-HDL-C may be a better goal for treatment than LDL-C
- When Is apo B useful and isn't it the same as non-HDL-C?
 - No, apo B is related to but not the same as non-HDL-C and may be more useful in individual patients than non-HDL-C in assessing CVD risk.
- What have the fibrate trials told us?
 - The CVD benefit is variable, mostly negative, and not related to TG lowering.
- Are high dose omega-3 fatty acid trials any different?
 - EPA alone relates to CVD benefit in patients who are at high risk or have ASCVD, an effect not related to TG lowering.

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Severe Hypertriglyceridemia Patient Case

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu

Patient is a 42-year-old woman with a history of hypertriglyceridemia recently found to have very elevated levels of fasting triglycerides and referred for further evaluation.

Patient has had hypertension for >5 yrs. Maximum wt. 165 lb. Eats one fish serving a week, whole grains ~ 2 servings a day, F&V 4-5 servings a day. Drinks several glasses of wine a day; no tobacco. Walks ~15 minutes daily. She denies abdominal pain. She works as a desk clerk in a local bank. Family history is relevant for T2DM in her mother and sudden death in an older brother – age 53. Meds included:

Fenofibrate 145 mg daily Omega-3 fatty acids 1 g daily 35 µg ethinyl estradiol Patient is a 42-year-old woman with a history of hypertriglyceridemia recently found to have very elevated levels of fasting triglycerides and referred for further evaluation.

<u>PE:</u>

Weight 172 lb., WC – 32 in.

 $BMI - 26.9 \text{ kg/m}^2$

Eruptive xanthomata – upper trunk

No lipemia retinalis

No carotid bruits, cardiac murmurs

Liver 10 cm; no abdominal tenderness

No lower extremity edema

Labs:

Cholesterol - 312 mg/dL

TG - 2860 mg/dL

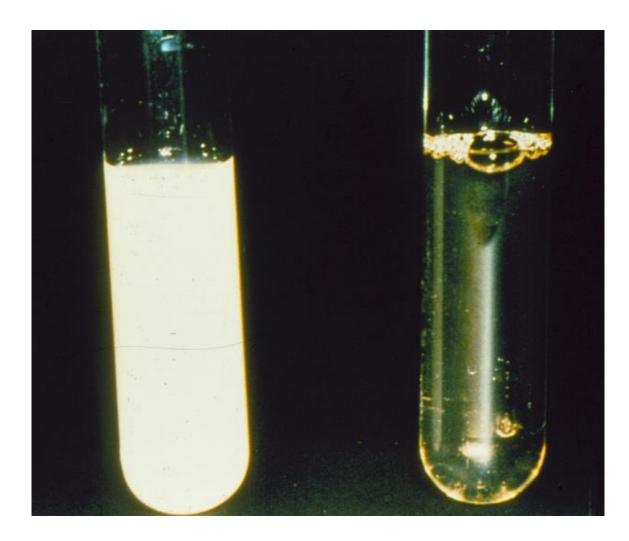
HDL-C - 32 mg/dL

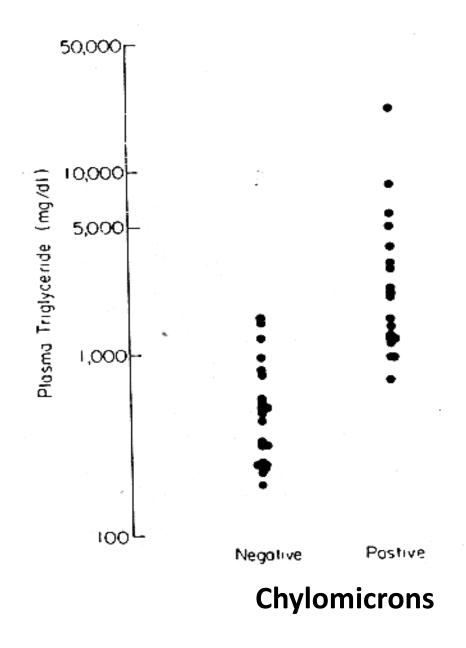
HbA1c – 6.8%

AST, ALT - normal

Creatinine – 0.9 mg/dL

TSH: 1.6 mIU/L

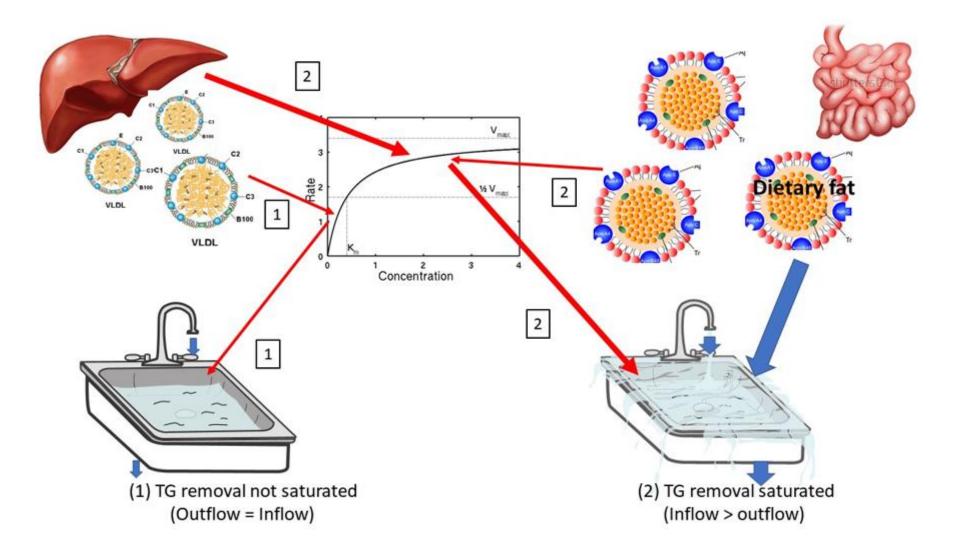

U/A – negative


Severe Hypertriglyceridemia

- What is the most likely explanation for this phenotype?
 - A. Familial chylomicronemia
 - B. Excessive alcohol intake
 - C. Oral estrogen
 - D. Undiagnosed type 2 diabetes
 - E. Genetic form of hypertriglyceridemia + acquired factors

Severe Hypertriglyceridemia

- The best management strategy is:
 - A. Reduce dietary fat intake to 20% and substitute 2 g bid of omega-3 fatty acids for 1 g daily.
 - B. Reduce dietary fat intake to 20% and discontinue alcohol and oral estrogen
 - C. Reduce dietary fat intake to 20%, substitute 2 g bid of omega-3 fatty acids for 1 g daily, discontinue alcohol and oral estrogen, and add rosuvastatin 40 mg daily.
 - D. Reduce dietary fat intake to <5%, discontinue alcohol and oral estrogen and measure fasting triglycerides every 3 days.
 - E. Reduce dietary fat intake to <5%, discontinue alcohol and oral estrogen, and instruct her in basal/bolus insulin administration.



Chait A and Brunzell JD & Bierman EL, Brunzell JD. Med Clin NA. 66:455, 1982 , 1992

Most Severe Hypertriglyceridemia (Type 5 Hyperlipoproteinemia)

Genetic Etiology of Hypertriglyceridemia Acquired Secondary Factor(s)

Triglyceride Clearance is Saturable

Severe Hypertriglyceridemia

Familial Chylomicronemia

LPL deficiency Apo CII deficiency **GPIHBP1** deficiency Rare: ~1/1,000,000 French Canadians: ~1/40,000 South Africans: ~1/40,000 Does not require secondary disorder Pancreatitis risk No premature CHD Lipemia Retinalis **Eruptive xanthomata**

Dietary Treatment of Severe Hypertriglyceridemia

<u>TG >1000 mg/dl:</u>

- 1. < 5% fat; no ETOH
- 2. ? D/C all TG-lowering Rx
- 3. < 5% dietary fat \rightarrow ~25% TG \downarrow daily in saturation kinetics
- 4. Fasting TG every 3 days until <1000 mg/dl
- 5. Restart Rx when TG <1000 mg/dl
- 6. If TG do not reach <1000 mg/dl, hospitalize & control diet
- 7. IV insulin or heparin, or plasmapheresis add little if anything
- 8. Once TG <1000 mg/dL, liberalize dietary fat and avoid simple sugars and ETOH based on rate and amount of TG decline.

www.cardiometabolichealth.org

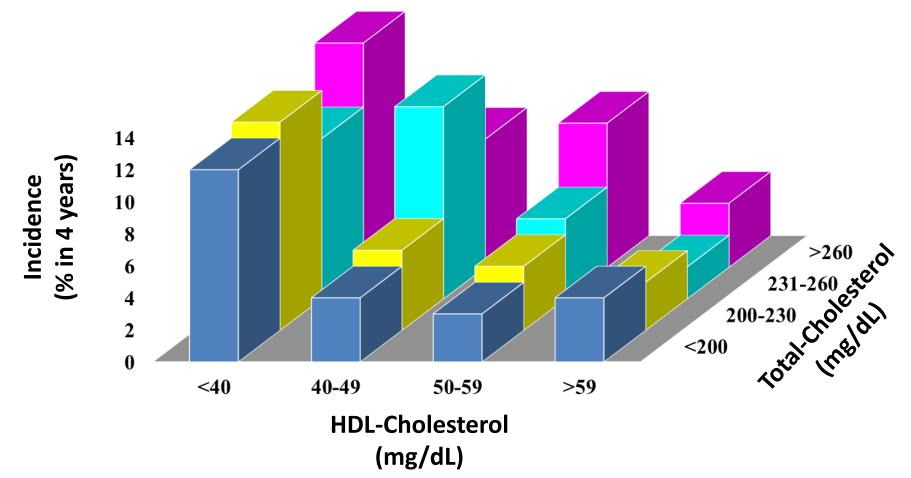
Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

fag

HDL-C Science and Management

Robert H. Eckel, MD, FAHA, FACC Professor of Medicine, Emeritus Division of Endocrinology, Metabolism and Diabetes Division of Cardiology S/P Charles A. Boettcher II Chair in Atherosclerosis University of Colorado Anschutz Medical Campus robert.eckel@cuanschutz.edu


Goals

- Discuss problems with the definition, related prevalence and causes of hypertriglyceridemia.
- Provide updates on if/how hypertriglyceridemia relates to atherosclerotic CVD using informative CVOTs.
- Evaluate strategies for triglyceride management:
 - Moderate
 - Severe
- Summarize HDL-C science and management.

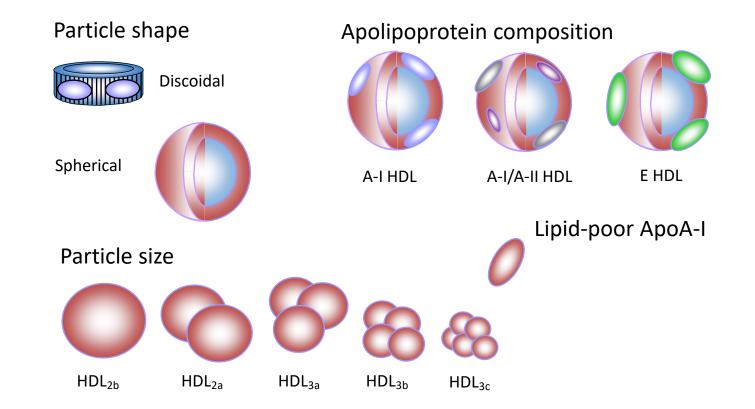
HDL-C Predictive Value

HDL-C is a strong predictor of CHD in subjects with desirable Total-Cholesterol

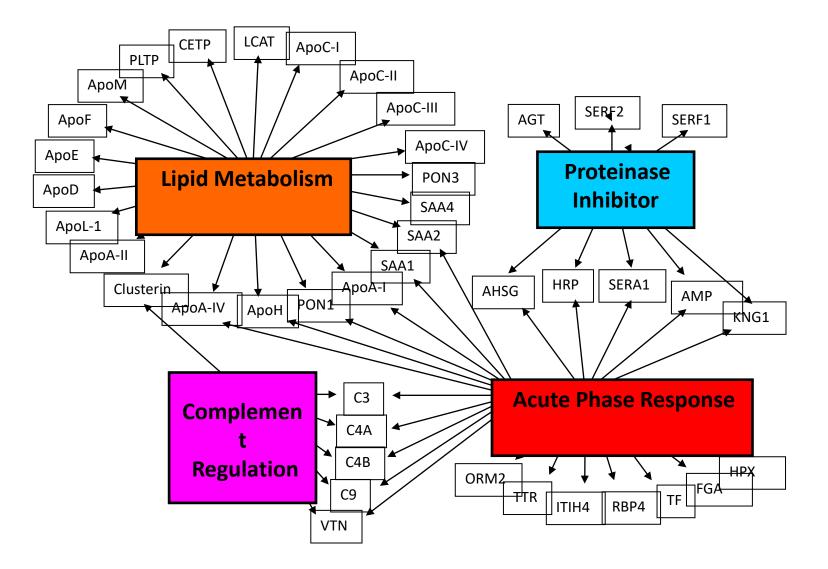
Men and women without CHD history

Acquired Causes of Low HDL-C

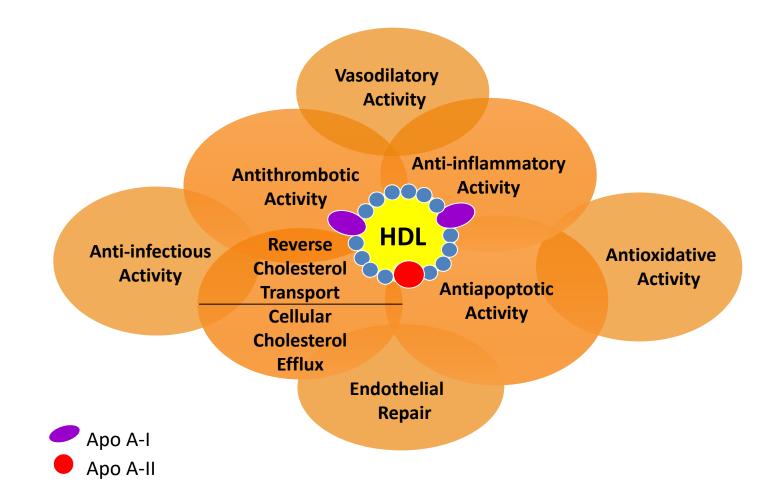
- Insulin resistance
 - Hypertriglyceridemia
 - Obesity
- Tobacco
- Anabolic steroids
- Drugs
 - sirolimus, protease inhibitors, β -blockers, IL-2
- Proteinuria
- Critical illness
- Paraproteinemias
- Obstructive liver disease
- Disappearing HDL syndrome


HDL- Paradox

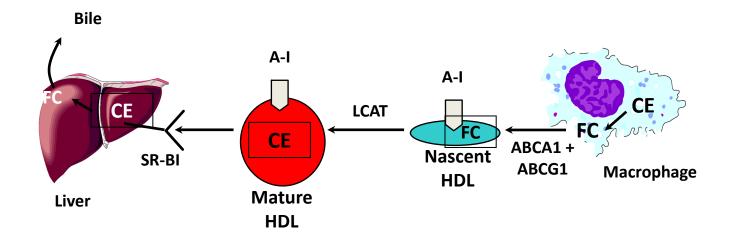
- CETP deficient Japanese families with HDL-C levels
 - 80-100 mg/dL or higher in heterozygotes
 - But, possibly an increase in CHD risk
- Apo A1_{Milano}
 - Low HDL octogenarians with low CHD risk
- Tangier Disease
 - ABCA1 gene deficiency
- Genetically low HDL-C: Turkey (HTGL gene mutation) and China
 - When relocated to an urban environment, \uparrow CHD risk
- Type 1 diabetes
 - HDL-C is increased but so is CHD
- Many patients without low HDL-C have CHD

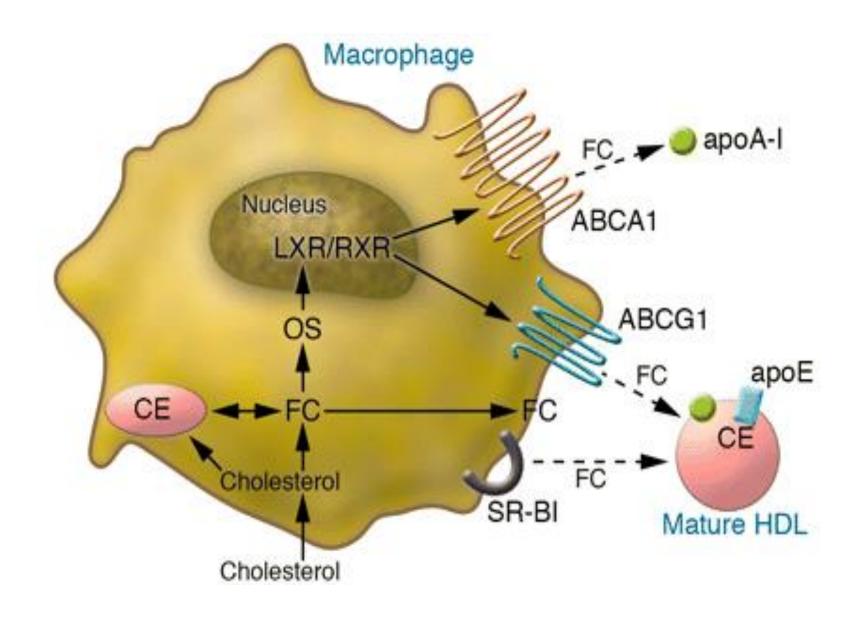

Dysfunctional HDL

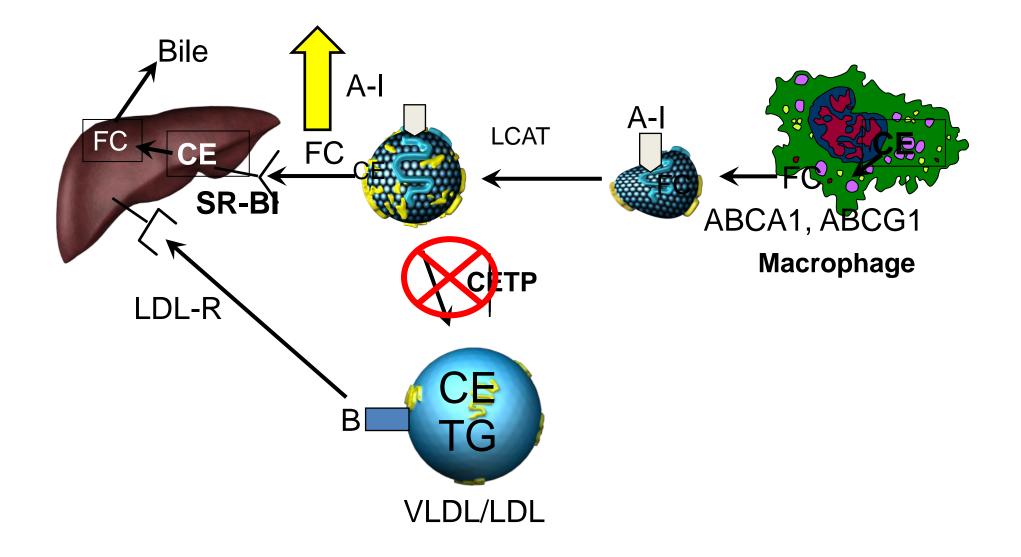
- Increased levels of circulating HDL-C do not necessarily decrease the risk of CHD events, CHD deaths, or mortality.
- HDL can act as an anti- or a pro-inflammatory molecule, depending on the context and environment.
- Based on a number of recent studies, it appears that the anti- or proinflammatory nature of HDL may be a more sensitive indicator of the presence or absence of atherosclerosis than HDL-C levels.


HDL Can be Subdivided into Various Subpopulations

The HDL Proteome




Potential Anti-atherogenic Actions of HDL


Chapman MJ, et al. Curr Med Res Opin. 20:1253, 2004 Assmann G, et al. Annu Rev Med. 53:321, 2003

HDL Metabolism and Reverse Cholesterol Transport

CETP Inhibitors Markedly Increase HDL-C Levels

Cholesterol Efflux Capacity beyond HDL-C Levels in Coronary Artery Disease (CAD) Patients

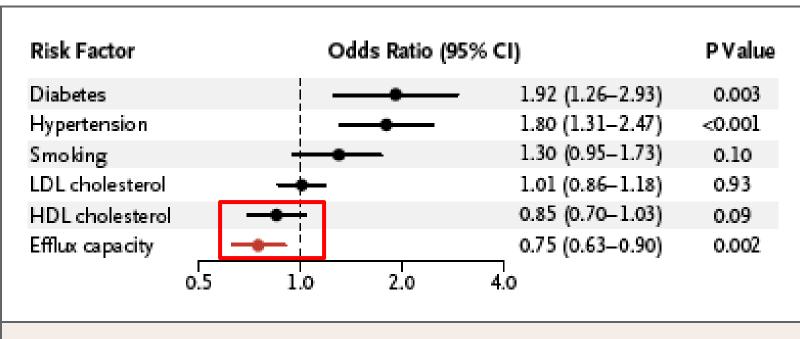
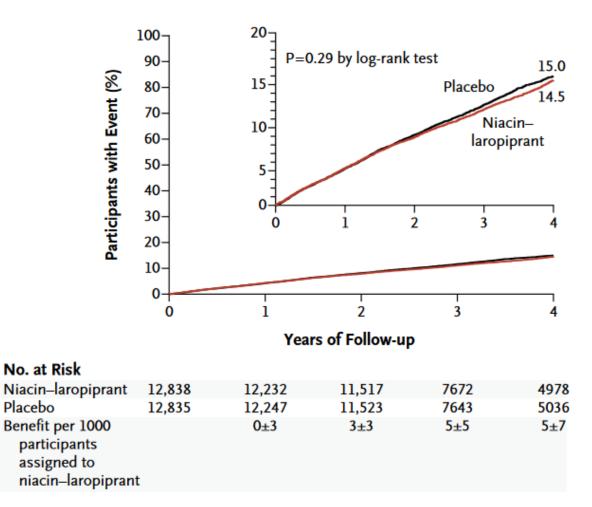


Figure 1. Odds Ratios for Coronary Artery Disease According to Efflux Capacity and Selected Risk Factors.

The logistic-regression model was also adjusted for age and sex. Odds ratios for continuous variables are per 1-SD increase.

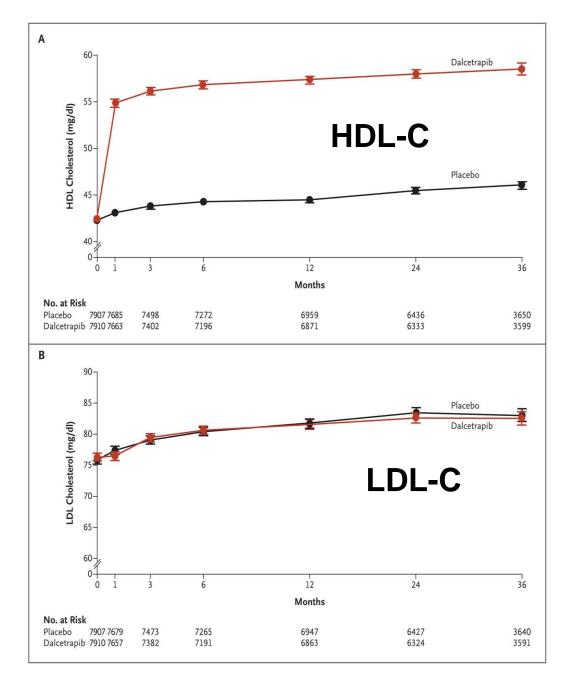

Effects of Drugs on HDL-C Levels

Niacin	15-35%
Fibrates	5-15%
Statins	5-10%
Resins	5-10%
Estrogens – p.o.	10-15%
PCSK9 inhibitors	5-10%

HPS2-THRIVE Study

- Largest ever randomized trial of effects of ER niacin on safety and CV events in diverse high-risk patients.
- Among those tolerating ERN/LRPT for 8 weeks, 76% remain compliant with active treatment after 3 years (vs 85% allocated placebo).
- ERN/LRPT increases risk of myopathy among patients on statin therapy, particularly in the Chinese
- No clear adverse effects of ERN/LRPT on liver, but known niacin side-effects on skin & GI confirmed
- Effects of 4 years of ERN/LRPT on vascular events in HPS2-THRIVE were published in 2014.

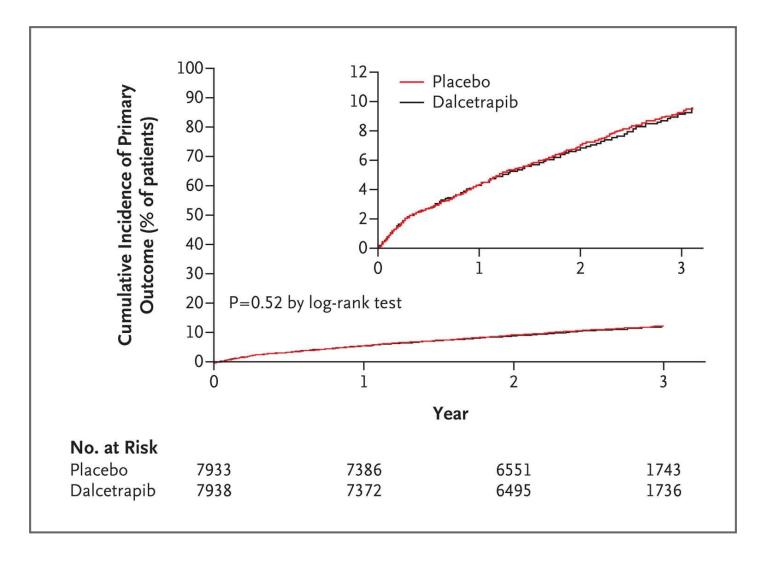
HPS2-THRIVE: First Major Vascular Event During Follow-up



Effects of Drugs on HDL-C Levels

Niacin	15-35%
Fibrates	5-15%
Statins	5-10%
Resins	5-10%
Estrogens – p.o.	10-15%
PCSK9 inhibitors	5-10%
 CETP inhibitors Torcetrapib - ↑ mortality; abandoned Dalcetrapib (JTT-705): Phase 3 trial stopped Anacetrapib (MK-0859): Phase 3 data – study completed Evacetrapib: Phase 3 stopped 	25-60%

Dal-OUTCOMES Study


- 15,600 patients with stable CHD after recent ACS
 - Fully recruited
- Background LDL-lowering with atorvastatin
- Randomized to dalcetrapib 600 mg vs. placebo
- Primary outcome: CVD morbidity and mortality in patients who are clinically stable after recent ACS and long-term safety profile

Dal-OUTCOMES: Lipid Effects

Schwartz GG et al. NEJM 367:208, 2012

Dal-OUTCOMES: Incidence of the Primary Efficacy End Point

Novel Therapies for Raising HDL

- Autologous delipidated HDL
- Reconstituted HDL
- Apo A-1 or apo A-1 peptides
- Apo A-1 Milano/Phospholipids
- RVX-208
- Endothelial lipase inhibitors
- Niacin receptor agonists
- LXR receptor agonists
- LCAT activators
- PPAR- α/δ dual agonists
- Apo A-1 mimetic peptides
 - e.g. 4F

The evidence is now overwhelming that low levels of HDL-C do not cause CHD and drug treatment is not indicated

> Why not then increase HDL in other heart healthy ways?

Heart Healthy HDL-C Raising Therapies

- Exercise: $\leq 10\%$ benefit relates to fat loss
 - Kodama S et al, Arch Int Med 167:000, 2007
- Sustained Weight Loss: 3-10%
 - Kelley GA et al, Int J Obesity 29:881, 2005
 - Belalcazar LM et al, *JLR* 53:2726, 2012
- Alcohol: 5-15%
 - Gaziano JM et al, *NEJM* 329:1829, 1994
- Smoking cessation: 5-10%
 - Maeda K et al, *Prev Med* 37:283, 2003

University of Colorado Anschutz Medical Campus

Thank You!