

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Peripheral Artery Disease: Epidemiology, Diagnosis, and Management

Marc P. Bonaca MD MPH Professor of Medicine Director of Vascular Research University of Colorado School of Medicine

University of Colorado Anschutz Medical Campus

Disclosures

• Grant support from: Amgen, AstraZeneca, Bayer, Janssen, Medtronic, Merck, Novo Nordisk, Pfizer, Wraser

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Peripheral Artery Disease: Burden, Clinical Presentation & Screening

Marc P. Bonaca MD MPH Professor of Medicine Director of Vascular Research University of Colorado School of Medicine

University of Colorado Anschutz Medical Campus

Definitions

- PAD peripheral artery disease
- CAD coronary artery disease
- Polyvascular disease combination of CAD and PAD
- MACE major adverse cardiovascular events
 - MI myocardial infarction "Heart Attack"
 - IS ischemic stroke "Stroke"
 - CVD cardiovascular death "Death"
- MALE major adverse limb events
 - ALI acute limb ischemia "Heart Attack of the Leg"
 - Amputation "Limb loss"
 - CLTI critical limb threatening ischemia

Atherosclerosis is a Systemic Disease

American Heart Association. Heart Disease and Stroke Statistics – 2021 Update.

TRACE Polyvascular Disease Common in Patients with Symptomatic PAD

 20,248 (76%) – <u>one</u> symptomatic vascular territory 	15,106 57%		
 4,954 (19%) – <u>two</u> symptomatic vascular territories 	2.667		1,664
 1,241 (5%) – <u>three</u> symptomatic vascular 	10% PAD	1,241 5%	6%
78% with Symptomatic LE PAD have concomitant CAD or prior Stroke	1,310 5%	622 2%	Stroke/TIA 3,810 14%

GWAS in Peripheral Artery Disease

Klarin et al. Nature Medicine 2019

Peripheral Artery Disease

 First described by a French veterinarian Bouley in a horse affected by progressive limping and lameness consequent to a fibrous clot that occluded the femoral arteries of the posterior limbs.

Bouley JF. Claudication intermittente des membres posterieurs determinee par l'obliteration des arteres femorales. **Rec Med Vet**. 1831; 8:517

Peripheral Artery Disease

 In humans, first noted by Brodie in 1846

Brodie BC. Lectures illustrative of various subjects in pathology and surgery. London, A Spottiswoode. 1846.

 Charcot who in 1858 clearly defined and described the syndrome of "intermittent claudication"

Charcot JMC. Sur la claudication intermittente observe dans un cas d'obliteration complete de l' une des arteres iliaques primitives. CR Soc Biol (Paris). 1858;5:225.

Peripheral Artery Disease (PAD)

- The presence of a stenosis or occlusion in the aorta or arteries of the limbs
- Usually caused by atherosclerosis
- Associated with an increased risk of death, myocardial infarction, and stroke
- May impair walking or cause critical limb ischemia

Heterogeneity in Biology

Hyperlipidemia, Smoking, Hypertension, Inflammation, Stress, Diabetes

Renal Dysfunction, Diabetes

(Calcium & Phosphate Regulation, Osteogenesis, Local Cellular Dysfunction)

Intimal/subintimal Disease

Low ABI ≤ 0.9

Medial Calcification

Risk Factors for PAD

Disease Progression in PAD

Mild Functional Symptoms	Symptomatic PAD Patients	PAD Patients Requiring Revascularization	PAD Patients post Revascularization
	Without need for revascularization	CLTI or Severe Claudication	Post- revascularization (history of CLTI or ALI particularly high risk)

ALI=Acute Limb Ischemia; CLTI=Chronic Limb-Threatening Ischemia

Claudication

- *Claudico* = to limp
- Reproducible discomfort of a defined group of muscles induced by exercise and relieved by rest
- Symptoms result from a supplydemand mismatch of blood flow

Clinical Classification

Fontaine		Rutherford			
Stage	Clinical State	Grade	Category	Clinical State	
l	Asymptomatic	0	0	Asymptomatic	
lla	Mild IC		1	Mild IC	
ll b	Moderate-severe IC	l	2	Moderate IC	
			3	Severe IC	
	Ischemic rest pain	II	4	Ischemic rest pain	
		111	5	Minor tissue loss	
IV	Ulcers, gangrene	- 111	6	Major tissue loss	

Clinical Presentation of PAD

Diagnosis Begins with Suspicion

- Rest pain (night pain)
- Non-healing ulcers in the extremity
- Intermittent Claudication
- Risk factors for CVD (80% asx)
- Absent or diminished peripheral pulses
 - Absent posterior tibial pulse > 90% specific for diagnosis of PAD
- Bruits
- Hair loss
- Dystrophic nail changes
- Rapid elevation pallor or dependent rubor of the limb
- Evidence of tissue loss (ulceration, gangrene)

Imaging Tests for PAD

- Duplex ultrasonography
- Magnetic resonance angiography
- Computed tomographic angiography
- Conventional contrast angiography

How to Perform and Calculate the ABI

PARTNERS Program ABI Interpretation

Above 0.90 — Normal 0.71-0.90 — Mild Obstruction 0.41-0.70 — Moderate Obstruction 0.00-0.40 — Severe Obstruction

Low ABI and Mortality

Association of ABI with all-cause mortality in a meta-analysis of 16 cohort studies including 48,294 subjects and 480,325 person-years of follow-up.

Increasing Prevalence of Peripheral Artery Disease

Documented Prevalence of PAD

Circulation. 2004;110:738-743. Circulation. 1985;71:510-515. Arterio Thromb Vasc Biol. 1998;18:185-192. Atherosclerosis. 2004;172:95-105. JAMA. 2001;286:1317-1324.

Increasing Rates of Critical Limb Ischemia and Hospitalizations

Polyvascular Disease in PAD is Associated with Increased MACE Risk

Bonaca Vasc Med 2018

Disease State

PAD and Risk of Major Adverse Cardiovascular Events

adjusted age, sex, race, BMI, diabetes, hypertension, smoking, eGFR, CHF, prior MI, CABG/PCI, and history of stroke or TIA.

Risk after ACS with PAD and Diabetes

Time (years) post-randomization

Bonaca et al. Lancet Diabetes & Endocrinology

Many PAD Patients Do Not Have Known CAD and Mortality Is Largely Unrelated to Atherothrombosis

1. Hiatt W, et al. NEJM 2017; 2. Belch et al. JVS 2010

Kochar et al. Under Review

Cardiovascular & Renal Risk by PAD in <u>Placebo</u> Patients

Adjusted for age, sex, race, BMI, hypertension, dyslipidemia, smoking, duration of DM, A1c, eGFR, hx CAD, and hx cerebrovascular disease

Burden of Risk in PAD is Driven by Limb Events

Events in PAD Patients at 3 Years

Events in PAD Patients at 4 Years REACH Registry

TRA2P-TIMI 50 25 25 22 22 20 20 15 15 10 10 6 6 6 5 4 5 5 3 0 0 MI Stroke Any Perip. Amputation MI Stroke Any Acute Revasc Perip. Limb Revasc Ischemia

> Kumbhani et al. EHJ 2014 Bonaca et al. Circulation 2013 Fowkes *et al. Lancet* 2017;14:156-170

- >200 million with PAD globally
- Incidence is increasing with key risk factors of age, obesity and diabetes
- Key morbidity is limb symptoms (claudication → critical limb ischemia)

•

- Most common outcome is the need for a limb revascularization procedure
- Limb tissue loss events (e.g. amputation and ALI) are as common as MI and stroke

Prior Limb Revascularization Associated with Greater Limb Risk – COMPASS Trial

Spectrum of Limb Outcomes in PAD

Limb Ischemic Events Occur in a Spectrum Similar to Cardiac Ischemic Events

Critical Limb Ischemia (CLI)

Fate of Patients With CLI After Initial Treatment

Summary of 6-month outcomes from 19 studies

Critical limb ischemia is defined as ischemic rest pain, non-healing wounds, or gangrene.

CLINICAL PRACTICE

Acute Limb Ischemia

Mark A. Creager, M.D., John A. Kaufman, M.D., and Michael S. Conte, M.D.

This Journal feature begins with a case vignette highlighting a common clinical problem. Evidence supporting various strategies is then presented, followed by a review of formal guidelines, when they exist. The article ends with the authors' clinical recommendations.

"This is a potentially catastrophic condition that can progress rapidly to limb loss and disability..."

"...Rates of death and complications among patients who present with acute limb ischemia are high..."

10-15% require amputation with majority above the knee

15-20% die within 1 year of presentation

Creager MA, et al. *NEJM* 2012. Image from: http://blog.clinicalmonster.com/2017/02/07/black-blue-red/.

Chronic Critical Limb Ischemia

- Tissue loss in the lower extremities
- Traditionally focused on ischemia as mediator
- Strongly associated with Diabetes
- Pathobiology poorly understood increasingly recognized as multifactorial

WiFi Concept for Diabetic Wound Assessment

STEMI

- Acute thrombotic occlusion of an artery threatening tissue loss
- "Time Is Muscle"
- Outcomes determined by time to acute reperfusion
- Reperfusion injury is a complication

Copyright 2005 by Elsevier Science

- Mortality at 1 year 8.1%¹
- Recurrent MACE at 1 year 3.4%¹
- HF at 1 year 7.4%¹

- Acute thrombotic occlusion of an artery threatening tissue loss
- "Time Is Muscle"
- Outcomes determined by time to acute reperfusion
- Reperfusion injury is a complication

0 Hour

24 Hour

- Mortality at 1 year 12.1%²
- MACE 11.7%, Recurrent ALI 24% (1 yr)²
- Amputation at 1-year 27%²
www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Medical Therapy for PAD: The Basics

Marc P. Bonaca MD MPH Professor of Medicine Director of Vascular Research University of Colorado School of Medicine

An Affiliate of:

University of Colorado Anschutz Medical Campus

Medical Therapy for PAD 1990-2010

1990	2000		2010		
	Th	erapies for MAC	E (PAD subgroup	os)	
ATT ASA vs Placebo ↓ MACE 23% ↑ Major Bleed 60%	CAPRIE Clopidogrel vs ASA ↓ MACE 24% Bleeding similar FDA Approved for PAD	HOPE ACEi vs Placebo ↓ MACE 22% FDA Approved for PAD	WAVE VKA+ASA vs ASA Neutral MACE ↑ Life threatening Bleeding >3X	HPS Statin vs Placebo ↓ MACE 22% FDA Approved for PAD	CHARISMA DAPT vs ASA Neutral MACE ↑ Mod Bleed 60%
No limb benefit described	No difference in Amputations	No limb benefit described	No difference in Limb ischemia	\downarrow Peripheral Revasc 20%	? Lower Hosp Risk
	Therapies f	or MALE (Acute I	Limb Ischemia, A	mputation)	
		Dutch BOA Warfarin after Bypass No benefit ↑ Hemorrhagic Stroke > 3X		CASPAR DAPT vs ASA after Bypass No benefit	CAMPAR DAPT vs ASA after ENDO Not completed
	The	erapies for Symp	toms (Claudicatio	on)	
Pentoxifylline pproved 1984 clear if it works		Cilostazol Improv Approved i	es Symptoms in 1999		
		FDA Approve	d for PAD		

Evolution Since 2010

Total CLI=1,140

<u>Only dedicated PAD trial</u> <u>was neutral</u>

Positive studies

- Subgroups of chronic ASCVD populations
- MACE Primary outcomes
- Excluded "acute" patients
- Minimal exposure in CLI (<5%)

CLI in Diabetes

Predictors of Amputation in Diabetes

22 year prospective observation study of 1,461 patient with diabetes and w/o foot ulcer

136 amputations (65% above ankle) – 5.3/1000 pt-years 79% were preceded by foot ulcer

Patient Factors

Renal dysfunction (1-SD decr in GFR) HR 1.18 (1.00 – 1.38) Poor vision HR 1.70 (1.05 – 2.73) Lower body weight Younger age

> Limb Factors Macrovascular Atherosclerosis • ABI ≤ 0.5 (obstructive arterial disease) HR 3.98 (2.31 – 6.85)

• ABI ≥ 1.3 (medial arterial disease) + TcPO₂ < 26 mmHg HR 2.20 (1.18 – 4.09)

Microvascular Disease – Neuropathy • 10-g monofilament testing HR 3.09 (2.02 – 4.74)

Limb Outcomes by PAD Status in Placebo Patients

Adjusted for age, sex, race, BMI, hypertension, dyslipidemia, smoking, duration of DM, A1c, eGFR, hx CAD, and hx cerebrovascular disease

Amputation May Be Necessary to Control Infection in CLI EUCLID Trial

Complex Outcome in PAD

- Not a biological event but a response which maybe indicated
 - Local practice pattern
 - Viability of limb at presentation (e.g. delays in care)
 - Patient viability (amputation safer than revascularization
- Multifactorial in etiology with an important role of infection in patients with PAD, particularly those with concomitant diabetes

Goals of Medical Therapy in PAD

Reduce Risk of Systemic Atherothrombosis (e.g. MI, Stroke)

Improve Function

Reduce Risk of Major Adverse Limb Events (e.g. CLTI, ALI, Amputation)

Goals of Medical Therapy in PAD

Polyvascular Disease in PAD is Associated with Increased MACE Risk

Bonaca Vasc Med 2018

Disease State

Amputation Risk in Peripheral Artery Disease

Adj. HR 22.71 (18.34 – 28.12)

Pathways of Risk in PAD

Therapies for All Patients

Lifestyle Interventions – they work!

- Healthy diet
- Exercise (supervised exercise preferred)
- Smoking Cessation

HOPE: Benefits of Ramipril in CV Risk Subgroups

Relative risk in ramipril group

Adapted with permission. HOPE Study Investigators. *N Engl J Med*. 2000;342:145-153. Copyright © 2000 Massachusetts Medical Society. All rights reserved.

Axes of Risk and Treatment Targets in PAD

Heart Protection Study: Vascular Event by Prior Disease

	Incidence of events			
	Statin	Control (n=10,267)	Risk vs Control	
Existing disease	(n=10,269)		Statin favored	Placebo
Previous MI	23.5	29.4		
Other CHD	18.9	24.2		
No prior CHD or CBV dis	sease 18.7	23.6		
PAD	24.7	30.5		24% Reduction (P<.0001)
Diabetes	13.8	18.6		
All patients	19.8	25.2		
			0.4 0.6 0.8 1	0 1.2 1.4

Heart Protection Study Collaborative Group. Lancet. 2002;360:7-22.

Statin Therapy and Vascular Events

HPS Simvastatin vs. Placebo

16% reduction in peripheral vascular events

20% reduction in non-coronary revascularization

Unclear effect on amputation

Atorvastatin in Patients With Claudication and PAD

PFWT=pain-free walking time. *P=.03. No change in ABI over 12 months.

MACE or MALE

In Patients with PAD and no MI or Stroke

Days from Randomization

PCSK9i Reduce both MACE and Major Adverse Limb Events (MALE)

FOURIER, Bonaca et al. Circ 2018

ODYSSEY, Jukema et al. Circ 2019; Schwartz et al. Circ 2020

Major Adverse Limb Events – Patients with PAD

MACE

MALE

Reduction of MACE and MALE with PCSK9i is associated with levels of LDL-C and Lp(a)

PAD events: lipoprotein(a)

	PAD in	PAD incidence		Relative risk reduction		
Subgroup	Alirocumab n/N (%)	Placebo n/N (%)	HR (95% CI)	1		
Quartile 1	26/2327 (1.1)	25/2403 (1.0)	1.05 (0.61-1.83)	·	—	
Quartile 2	28/2438 (1.1)	33/2293 (1.4)	0.78 (0.47-1.29)		_	
Quartile 3	21/2356 (0.9)	33/2373 (1.4)	0.66 (0.38-1.14)	·	-	
Quartile 4	26/2341 (1.1)	54/2393 (2.3)	0.48 (0.30-0.77)			
Overall	101/9462 (1.1)	145/9462 (1.5)	0.69 (0.54-0.89)	-		
	$P_{\rm trend}$	= .03]	
				0.3 0.5 1 Alirocumab	Placeb	

Bittner et al. JACC 2020; Schwartz et al. Circ 2020

Icosapent Ethyl in PAD

A First and Total (First and Recurrent) Primary Composite Endpoints in Patients with PAD

B First and Total (First and Recurrent) Primary Composite Endpoints in Patients without PAD

Bhatt et al. Circulation 2021

Axes of Risk and Treatment Targets in PAD

Specific Glucose Lowering Targets in PAD

Dhatariya et al. Diabetes Care 2018

Liraglutide and Limb Events

Dhatariya et al. Diabetes Care 2018

STRIDE Trial: Functional Outcomes Trial in PAD

Primary objective:

To compare the effect of semaglutide s.c. 1.0mg OW vs. placebo on a functional capacity in terms of maximum walking distance in patients with T2D and PAD

Secondary objective:

To compare the effect of semaglutide s.c. 1.0 mg OW vs. placebo on clinical, biochemical, and patient reported outcomes in patients with T2D and PAD

Primary endpoint:

Ration to baseline at week 52 in MWD on a graded treadmill test at constant speed and incline (3.2 km/h, 12%)

Secondary confirmatory endpoints

- Ratio to baseline at week 52 in PFWD on a graded treadmill test at constant speed an incline (3.2 km/h, 12%)
- Change from baseline in global score of WIQ

Supportive secondary endpoints

Change from baseline in:

- Body weight
- HbA1c
- Systolic and diastolic blood pressure
- ABI and TBI
- Individual WIQ scores (distance, speed, stair climbing)

Canagliflozin and Amputation in CANVAS

Significant Benefit for MACE

CVD/MI/Stroke

0.86 (0.75 - 0.97)

Amputation					
1.97 (1.41	– 2.75)			

ARI 3.93% in PAD

	Canagliflozin Per 1000	Placebo Per 1000	Hazard ratio (95% confidence
	patient-years	patient-years patient-years	
History of amputation			
Yes	96.30	59.16	2.15 (1.11–4.19)
No	4.68	2.48	1.88 (1.27–2.78)
History of peripheral vascular disease			
Yes	12.09	8.16	1.39 (0.80-2.40)
No	5.20	2.41	2.34 (1.53-3.58)

Canagliflozin and Amputation in CANVAS

CREDENCE: Patients With T2DM and CKD

Objective: Designed to formally test whether canagliflozin reduces the risk of kidney failure and cardiovascular events in patients with T2DM and markers of established kidney disease compared to placebo when used in addition to standard of care Design:

- Randomized, double-blind, multicenter, event-driven Phase III study
- 4,401 patients randomized 1:1 100 mg canagliflozin vs placebo

Exclusion

History of atraumatic amputation within past 12 months of screening, or an active skin ulcer, osteomyelitis, gangrene, or critical ischemia of the lower extremity within 6 months of screening.

Care During Trial

Provide or ensure that all subjects have had general foot self-care education.

Perform a comprehensive foot evaluation at each visit to identify risk factors for ulcers and amputations. The examination should include inspection of the skin, assessment of foot deformities, neurological assessment including pinprick or vibration testing or assessment of ankle reflexes, and vascular assessment including pulses in the legs and feet.

Subjects who have history of prior lower extremity complications, loss of protective sensation, structural abnormalities, or peripheral arterial disease should be referred to foot care specialists for ongoing preventive care.

Management of Study Drug

Added statement that study drug should be interrupted for subjects who develop conditions that are associated with amputation.

DECLARE-TIMI 58: Consistent Benefit of Dapagliflozin in Patients with and without PAD

Bonaca et al. Circulation 2020

SGLT2 Inhibitors in Peripheral Artery Disease

MACE risk in patient with CVD

Heart failure in primary and secondary prevention

Kidn ir

Kidney complications in primary and secondary prevention

Amputation signal with a single agent in 1 study

Absence of risk in second study could be due to no true risk or attenuation of risk with protocol changes (e.g. good foot care, stopping if high risk condition, patient selection)

Important benefits for PAD patients, especially those with CAD, HF, and kidney disease. Risk (if true) may be reasonably managed by foot hygiene, patient selection, agent selection, and drug management during high risk periods.

Functional Outcome Trial in Peripheral Artery Disease (PAD)

ABI, ankle-brachial index; TBI, toe-brachial index; MWD, maximal walking distance; OW, once weekly; PFWD, pain-free walking distance; WIQ, walking impairment questionnaire; AP, angina pectoris; HF, heart failure; COPD, chronic obstructive pulmonary disease; CCS, Canadian Cardiovascular Scale; NYHA, New York Heart Association; MRC, Medical Research Council Scale; PD, Parkinson's disease

Axes of Risk and Treatment Targets in PAD

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Antiplatelet Therapy for PAD

Marc P. Bonaca MD MPH Professor of Medicine Director of Vascular Research University of Colorado School of Medicine

University of Colorado Anschutz Medical Campus

Antiplatelet Therapy for PAD

22% Reduction of CVD/MI/Stroke in high risk patients
23% Reduction of CVD/MI/Stroke in PAD patients
OR for major extracranial bleeding 1.6 (1.4 – 1.8)
No difference between the high risk groups

Ticagrelor vs. Clopidogrel for "Symptomatic PAD"

Only ~30% with CAD

Statistical Interaction with benefit w/CAD & PCI (HR 0.82, p-interaction 0.03)

Atherosclerosis (PAD) Associated with Arterial & Venous Thrombosis

- Clinically manifested atherosclerosis: heightened risk of venous thromboembolism (VTE)^{1,2}
- Patients with VTE: increased risk of atherothrombosis³⁻⁶
- Shared pathobiologies: endothelial dysfunction, inflammation, and thrombin and platelet activation⁷
- Strategies targeting >1 pathway may provide broad benefit across vascular territories in atherosclerosis⁸

From Berkowitz S et al. ISTH 2021 Late Breaking Science

Refs: ¹Prandoni P et al. NEJM 2003; ²Cavallari I et al. Circulation 2018. ³Prandoni P et al. J Thromb Haemost 2006; ⁴Sorensen HT et al. Lancet 2007; ⁵Spencer FA et al. J Thromb Haemost 2008; ⁶Klok FA et al. Blood 2009. ⁷Prandoni P. Internal and Emergency Medicine. 2020; ⁸Weitz JI et al. Thromb Haemost 2020.
Dual Antiplatelet Therapy after Bypass

• 851 patients undergoing unilateral below-knee bypass grafting for atherosclerotic PAD

ASA (75 mg – 100 mg)	+ clopidogrel	vs. ASA alone
----------------------	---------------	---------------

Outcome	Clopidogrel N=425	Placebo N=426	HR (95% CI)	P-value
Primary Composite*	149	151	0.98 (0.78 – 1.23)	P=NS
Graft Occlusions	93	97	0.94 (0.71 – 1.25)	P=NS
Amputation	31	45	0.68 (0.43 - 1.08)	P=NS
Index Revascularization			0.89 (0.65 – 1.23)	P=NS
Myocardial Infarction			0.81 (0.32 – 2.06)	P=0.66
Stroke			1.02 (0.41 – 2.57)	P=0.96
CV Death			1.49 (0.73 – 3.01)	P=0.27
CV Death, MI, Stroke			1.09 (0.65 – 1.82)	P=0.75
All Cause Mortality	24	17	1.44 (0.77 – 2.68)	
GUSTO Moderate or Severe Bleeding	19	5	2.84 (1.32 – 6.08)	0.007

Benefit in subgroup with prosthetic grafts?

DAPT with Aspirin and Clopidogrel **GUSTO Moderate or Severe Bleeding HR 2.84 (1.32 – 6.08)**

Warfarin after Bypass

2,690 patients with infrainguinal bypass grafting Randomized to warfarin (INR 3-4.5) vs warfarin

	Oral anticoagulants (n=1326)	Aspirin (n=1324)	Hazard ratio (95% CI)
Patient-years of observation*	2287	2273	
First outcome event		_	
Occlusion	308	322	0.95 (0.82-1.11)
Vascular death, non-fatal myocardial infarction, non-fata stroke, or amputation	1 248	275	0.89 (0.75–1.06)
Death from all causes	211	205	1.02 (0.85-1.24)
Death from vascular causes	137	146	0.94 (0.74-1.18)
Myocardial infarction	29	42	0.69 (0.42-1.10)
All stroke	35	47	0.74 (0.48-1.14)
Ischaemic stroke	17	34	0.50 (0.28-0.89)
Haemorrhagic stroke	14	4	3.48 (1.14-10.6)
Undefined stroke (no CT scan	4	11	0.36 (0.12-1.14)
available)			
All amputation	100	110	0.90 (0.69-1.19)
Ipsilateral amputation	89	91	0.98 (0.73-1.31)
Vascular intervention	429	446	0.95 (0.84-1.09)
Haemorrhage (including intracranial)	108	56	1.96 (1.42–2.71)

CT=computed tomography. *Patient-years are given for secondary-outcome event. Number of patient-years for other outcome events differ slightly.

? Benefit for vein grafts HR 0.69 (0.54 – 0.88) vs. non-vein grafts HR 1.26 (1.03 – 1.55)

Dutch Bypass Oral anticoagulants or Aspirin (BOA) Study Group. Lancet. 2000

Vorapaxar – First in Class PAR-1 Antagonist

ပ်ားရှိ

Himbacine

Bark of the Australian Magnolia (Galbulimima baccata)

Found in the tropical zones of eastern Malaysia, New Guinea, northern Australia and the Solomon Islands.

> Zhang C et al. *Nature* 2012;492:387-92 <u>Varopaxar Label</u>

Sham

PAR-1 Antagonist

Vorapaxar in Lower Extremity PAD

Hospitalization for Acute Limb Ischemia

Bonaca et al. Circulation 2013

Effect of Vorapaxar in Patients in PAD for MACE and Major Adverse Limb Events by CAD Status

COMPASS Trial

>90% with CAD, large subgroup with Concomitant PAD, consistent benefits for both

Efficacy Outcomes in PAD

	R + A	R	А	Riva + aspirin			
				vs.		Riva vs. aspirin	
	N=2,492	N=2,474	N=2,504	Aspirin			
Outcome	Ν	Ν	Ν	HR	2	HR	
	(%)	(%)	(%)	(95% CI)	Р	(95% CI)	Р
	126	149	174	0.72	0.005	0.86	0.10
MACE	(5.1)	(6.0)	(6.9)	(0.57-0.90)	0.005	(0.69-1.08)	0.19
N 41	51	56	67	0.76		0.84	
IVII	(2.0)	(2.3)	(2.7)	(0.53-1.09)	-	(0.59-1.20)	-
	25	43	47	0.54		0.93	
Stroke	(1.0)	(1.7)	(1.9)	(0.33-0.87)	-	(0.61-1.40)	-
	64	66	78	0.82		0.86	
CV Death	(2.6)	(2.7)	(3.1)	(0.59-1.14)	-	(0.62-1.19)	-
MALE	30	35	56	0.54	0.005	0.63	0.02
	(1.2)	(1.4)	(2.2)	(0.35-0.84)	0.005	(0.41-0.96)	0.03
Major	5	8	17	0.30	0.01	0.46	0.07
amputation	(0.2)	(0.3)	(0.7)	(0.11-0.80)	0.01	(0.20-1.08)	0.07

MACE, MALE, or Major Amputation

Anand et Lancet 2019

VOYAGER PAD Primary Results

Bonaca MP...Hiatt WR. NEJM 2020

Primary Endpoint*

ITT - HR 0.85

Primary Endpoint & Components

	KM% 3 Years (n) Rivaroxaban N=3286	KM% 3 Years (n) Placebo N=3278	HR (95% CI)
Primary efficacy outcome	17.3	19.9	0.85 (0.76–0.96)
Acute limb ischemia	5.2	7.8	0.67 (0.55–0.82)
Major vascular amputation	3.4	3.9	0.89 (0.68–1.16)
Ischemic stroke	2.7	3.0	0.87 (0.63–1.19)
Myocardial infarction	4.6	5.2	0.88 (0.70–1.12)
CV death	7.1	6.4	1.14 (0.93–1.40)

*Presented in order of hierarchy from left to right

Safety

ARI, absolute risk increase; NNH, number needed to harm Bonaca MP...Hiatt WR et al. N Engl J Med 2020;382:1994–2004 Bonaca MP et al. Presented at ACC 2020. Slides available at

Voyager pad 🎮

www.clinicaltrialresults.org/Slides/ACC%202020/Bonaca_VOYAGER-PAD.pptx

Procedural Bleeding

Bonaca MP et al. Presented at ACC 2020. Slides available at

www.clinicaltrialresults.org/Slides/ACC%202020/Bonaca_VOYAGER-PAD.pptx

Risk–Benefit

First Events Prevented / Caused for 10,000 Patients Treated* for 1 Year

First Events Prevented / Caused from Time from Randomization

Bonaca MP...Hiatt WR *et al*. *N Engl J Med* 2020;382:1994–2004 Bonaca MP *et al*. Presented at ACC 2020. Slides available at <u>https://cpcclinicalresearch.org/wp-content/uploads/2020/03/CPC-VOYAGER-PAD-</u>

Primary-Results-Slide-Presentation-by-Marc-P.-Bonaca.pdf

*Efficacy and safety on treatment

VOYCIGER PAD 🕅

Background Clopidogrel

Placebo

Risk of ISTH Bleeding with Rivaroxaban by Use and Duration of Concomitant Clopidogrel

Hiatt WR et al. Circulation 2020

Pathology of Peripheral Artery Disease in Patients With Critical Limb Ischemia

Navneet Narula, MD,^{a,b} Andrew J. Dannenberg, MD,^a Jeffrey W. Olin, DO,^c Deepak L. Bhatt, MD, MPH,^d Kipp W. Johnson, BS,^c Girish Nadkarni, MD,^c James Min, MD,^a Sho Torii, MD,^e Priti Poojary, MD, MPH,^c Sonia S. Anand, MD,^f Jeroen J. Bax, MD, PHD,^g Salim Yusuf, MD,^f Renu Virmani, MD,^e Jagat Narula, MD, PHD^c

FIGURE 2 Clinical Examples of CLI With Minimal Atherosclerotic Disease in BKA Arteries, and Plaque Rupture in AKA Specimen

Trials with PAD Subgroups

Changes at From Baseline to 1 Month after LER

Limb Outcomes after LER for Claudication

All p-interaction for claudication vs. CLI > 0.05

Net Clinical Benefit

Days from Randomization

*Safety Population, On-Treatment Scope

First and Subsequent Vascular Events

MACE = major adverse cardiovascular event; MALE = major adverse limb event.

Accrual of Events per 100 Patients

CARDION Cardiometabolic Health Congress

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

PAD: Other Therapeutic Approaches and Individualization of Treatment

Marc P. Bonaca MD MPH Professor of Medicine Director of Vascular Research University of Colorado School of Medicine

(ag

University of Colorado Anschutz Medical Campus

Axes of Risk and Treatment Targets in PAD

<u>Thrombosis Risk</u> (AP monotherapy if high bleeding risk, ASA+rivaroxaban if acceptable bleeding risk)

Pharmacotherapy for Claudication FDA Approved Drugs

Pentoxifylline

- Methylxanthine
- Approved August 1984
- Decreases plasma viscosity, improves RBC deformability, some vasodilation

Cilostazol

- Phosphodiesterase III inhibitor derivative
- Approved January 1999
- Platelet inhibitor, vasodilation, 个HDL-cholesterol, ↓triglycerides
- Contraindicated if history of CHF of any severity

The Role of Vascular Intervention in PAD

Chronic PAD

Revascularization <u>is reasonable</u> if limiting in spite of inadequate response to guideline directed therapy (Class IIa)

Patency (durability) variable

Society of Vascular Surgery – Accessed 11/20/2020

ALI / CLI

Revascularization <u>Recommended</u> (Class I)

CLI / CLTI

Revascularization Options Endovascular Surgical **Balloon opening** Stent in place Decision of which depends on: Graft being sewn into Anatomy (lesion length) Patient comorbidity / surgical risk lague from Patient choice Less invasive & faster recovery Geography / practice pattern Requires surgery & OR (hospitalization) Local options and skill sets No incision Clinical setting (inpatient vs. outpatient) Longer recovery Minimal anesthesia Costs in some regions **Requires anesthesia** Can be done inpatient and outpatient

What is the best initial approach in CLI?

Equipoise exists → BEST-CLI Trial

 Options for patients with anatomy not amenable for endovascular

PAD Risk-reduction Therapies

Therapies for all Patients

- Lifestyle Modification & Exercise
- <u>Tobacco Cessation Therapies</u>
- Targeting blood pressure goals with preference for ACEi
- LDL-C lowering with statin ± ezetimibe and/or PCSK9i
- Antiplatelet monotherapy (symptomatic), preference for P2Y₁₂ inhibition

Therapies for MACE Reduction in Selected Patients

Diabetes

- Glucose lowering to reduce microvascular risk
- GLP-1, SGLT2 inhibitors

Prior MI or CAD (Polyvascular Disease) and low bleeding risk

- ASA + rivaroxaban 2.5 BID (broad polyvascular definition)
- ASA + ticagrelor 60 mg BID (prior MI or other need for DAPT)
- ASA and/or clopidogrel with vorapaxar

Therapies for MALE Reduction in all Patients

• LDL-C lowering with statin \pm ezetimibe and/or PCSK9i

Therapies for MALE Reduction in Selected Patients

Prior peripheral revascularization & low bleeding risk

- ASA + rivaroxaban 2.5 BID
 - ASA + ticagrelor 60 mg BID (prior MI or other need for DAPT)
- ASA and/or clopidogrel with vorapaxar

Therapies for Claudication

Symptomatic Patients

Cilostazol 100 mg BID (only if no history of heart failure)

Novel Therapeutic Approaches in PAD

An Approach to Risk Factor Modification in PAD

Axis of Therapy	Symptomatic PAD No prior Revasc No CAD No CVD	Symptomatic PAD with Prior Revasc Or Polyvascular Disease
Lifestyle	Smoking Cessation, Diet, Exercise	Smoking Cessation, Diet, Exercise
Antithrombotic	Antiplatelet Monotherapy	Aspirin and either Rivaroxaban or Vorapaxar (both approved in PAD) If low bleeding risk
Lipid Lowering	High Intensity Statin + eze and/or PCSK9i (target LDL-C < 55 mg/dL) Icosapent ethyl?	High Intensity Statin + eze and/or PCSK99 (target LDL-C < 55 mg/dL) Icosapent ethyl?
Angiotensin Inhibition	If HTN then ACEi	If HTN then ACEi
Glucose Lowering	If DM then GLP1 agonist and/or SGLT2i	If DM then GLP1 agonist and/or SGLT2i
For Symptoms	Cilostazol	Cilostazol

Use of Secondary Prevention Medications in NHANES – How were we doing in the early 2000s?

* Statistical comparison by Chi-square test

Statin Use in ASCVD and PAD – How are we doing now?

943,232 Medicare patients – December 2014 through December 2017

Current Lipid Lowering Therapy in PAD After Intervention

Hess...Bonaca et al. JACC 2021

How do we Translate to Practice?

Intervention Model

OPTIMIZE PAD-1: Study Design

PEP: % change in LDL-C from BL to 12 months (secondary at 6 months) Others: QoL, Adherence, biomarkers, MACE & Limb Outcomes

Summary & Conclusion

- Peripheral artery disease is an increasingly prevalent and severe form of atherosclerosis affecting more than 200 million globally
- Patients suffer from both cardiovascular (heart attack, stroke) and limb (acute limb ischemia, amputation) outcomes
- Subgroups of this population are at particularly high risk (prior revascularization, concomitant coronary disease) and the combination of PAD and DM represents a group at particularly high risk MACE and amputation
- Few therapies studies in dedicated PAD trials and with focus on limb outcomes with large unmet needs
- Gaps in applying existing therapies must be addressed including implementation science and addressing disparities in care