www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

Strategies for Prevention of Stroke Associated with Atrial Fibrillation

Sunny Kapur MD

Cardiac Electrophysiology Brigham and Women's Hospital Harvard Medical School

 Honoraria / Research Support - Medtronic, Abbott, Biotronik, Novartis, Pfizer, Aziyo

Outline

- The relationship between Afib and Stroke
- Pharmacologic Prevention of CVA in AF
- Non-pharmacologic Prevention of CVA in AF
- Preventing Recurrent AF strokes

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

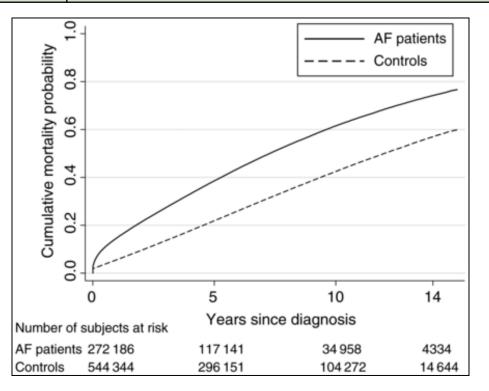
Certified Cardiometabolic Health Professional (CCHP)

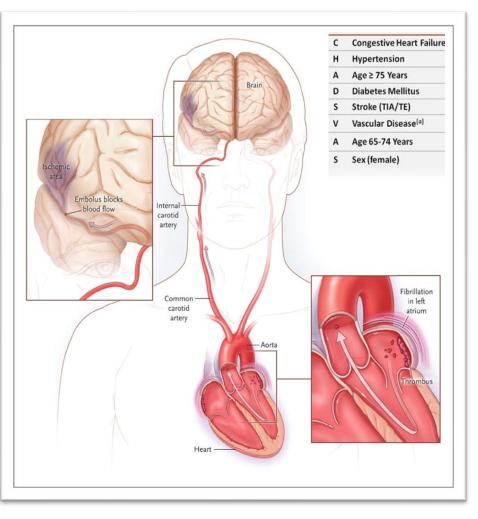
(ag

The Relationship Between AF and Stroke

Sunny Kapur MD

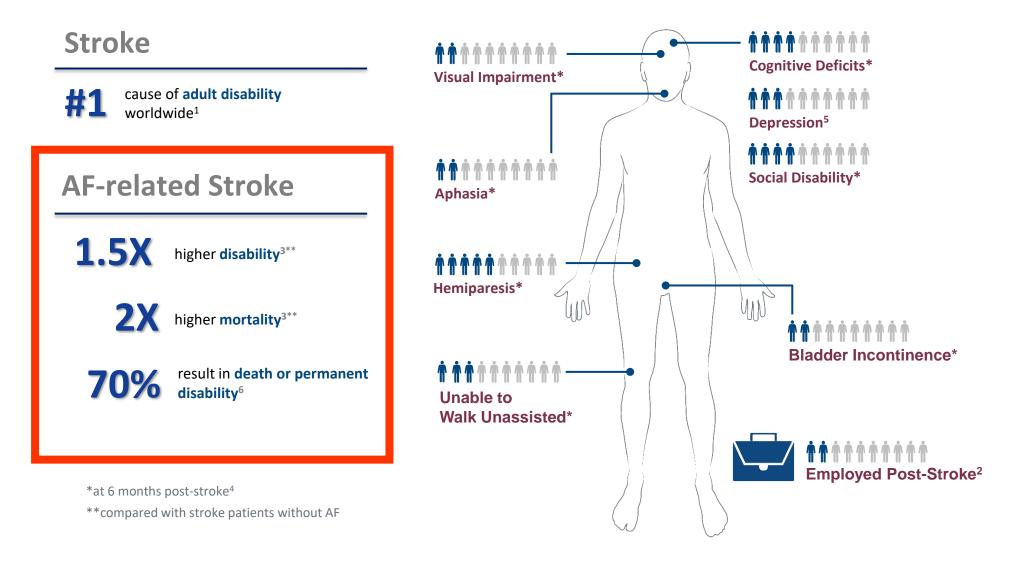
Cardiac Electrophysiology Brigham and Women's Hospital Harvard Medical School


Outline

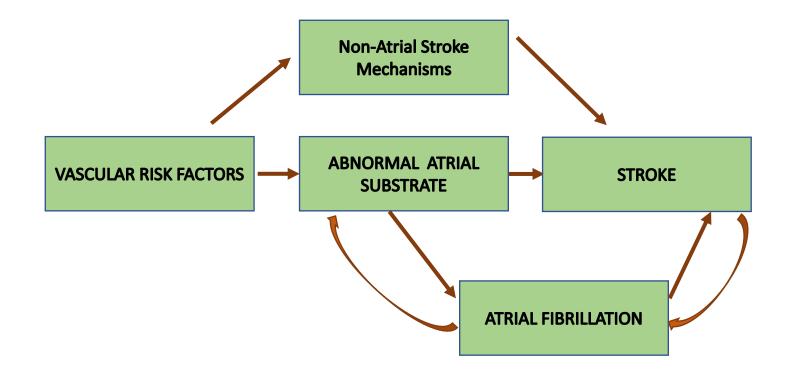

- The relationship between Afib and Stroke
- Pharmacologic Prevention of CVA in AF
- Non-pharmacologic Prevention of CVA in AF
- Preventing Recurrent AF strokes

AF is associated with significant morbidity and mortality

Clas	ssification of AF-related symptoms (EHRA Score)
EHRA class	Explanation
EHRA I	"No symptoms"
EHRA II	" Mild symptoms"; normal daily activity not affected
EHRA III	"Severe symptoms"; normal daily activity affected
EHRA IV	" Disabling symptoms"; normal daily discontinued



Go AS. N Engl J Med 2009;360:2127-2129. Eur Heart J. 2013 Apr;34(14):1061-7.



AF leads to strokes – AF related strokes are debilitating

- 1. Chee and Tan. "Impact of atrial fibrillation among stroke patients in a Malaysian teaching hospital." Med J Malaysia 69.3 (2014): 119-23.
- 2. Sreedharan et al. "Employment status, social function decline and caregiver burden among stroke survivors. A South Indian study." Journal of the neurological sciences 332.1 (2013): 97-101.
- 3. Lamassa et al. "Characteristics, Outcome, and Care of Stroke Associated With Atrial Fibrillation in Europe Data From a Multicenter Multinational Hospital–Based Registry (The European Community Stroke Project)." Stroke 32.2 (2001): 392-398.
- 4. Kelly-Hayes et al. "The influence of gender and age on disability following ischemic stroke: the Framingham study." Journal of Stroke and Cerebrovascular Diseases 12.3 (2003): 119-126.
- 5. Loo and Gan. "Burden of stroke in Malaysia." International Journal of Stroke 7.2 (2012): 165-167.
- 6. Holmes DR, Atrial Fibrillation and Stroke Management: Present and Future, Seminars in Neurology 2010;30:528–536

$AF \rightarrow CVA$ Mechanisms

Updated model of thromboembolic stroke. This model emphasizes the importance of systemic and atrial substrate as well as rhythm in explaining the relationship between atrial fibrillation (AF) and stroke. In this model, aging and systemic vascular risk factors cause an abnormal atrial tissue substrate, or atrial cardiopathy, that can result in AF and thromboembolism. Once AF develops, the dysrhythmia causes contractile dysfunction and stasis, which further increases the risk of thromboembolism. In addition, over time, the dysrhythmia causes structural remodeling of the atrium, thereby worsening atrial cardiopathy and increasing the risk of thromboembolism even further. In parallel, systemic risk factors increase stroke risk via other mechanisms outside the atrium, such as large-artery atherosclerosis, ventricular systolic dysfunction, and in-situ cerebral small-vessel occlusion. Once stroke occurs, autonomic changes and post-stroke inflammation may transiently increase AF risk.

$AF \rightarrow CVA$ Mechanisms?

Marker	Authors	Year	Outcome	A Not Adjusted For AF	ssociation Adjusted For AF
ECG markers					
Frequent PACs	Binici et al <u>40</u>	2010	Stroke	1.79 (1.14–2.81) <u>*</u>	1.73 (1.09–2.75) <u>*</u>
PSVT	Kamel et al <u>33</u>	2013	Stroke	N/A	2.10 (1.69–2.62 <u>)†</u>
PTFV1	Kamel et al <u>35</u>	2014	Stroke	1.22 (1.03–1.45) <u>‡</u>	1.21 (1.02–1.44) <u>‡</u>
PTFV1	Kamel et al <u>41</u>	2014	Infarct <u>§</u>	1.09 (1.04–1.16) <u>‡</u>	1.09 (1.04–1.15) <u>‡</u>
Frequent PACs	Larsen et al <u>32</u>	2015	Stroke		2.00 (1.16–3.45) <u>∥</u>
PTFV1	Kamel et al <u>34</u>	2015	Non-lacunar stroke	1.44 (1.04–1.99) <u>#</u>	1.49 (1.07–2.07) <u>#</u>
Echocardiographic markers					
Left atrial size	Benjamin et al ³⁷	1995	Stroke	N/A	2.4 (1.6–3.7) <u>**</u>
Left atrial size	Di Tullio et al ³⁹	1999	Stroke	N/A	1.47 (1.03–2.11) <u>++</u>
Left atrial size	Karas et al ⁴²	2012	Stroke	N/A	1.35 (1.12–1.62) <u>‡‡</u>
Left atrial size	Yaghi et al ³⁸	2015	Cryptogenic or cardioembolic stroke	N/A	1.55 (1.01–2.37) <u>‡‡</u>
Left atrial volume	Barnes et al ⁴³	2004	Stroke	N/A	1.63 (1.08–2.46) <u>§§</u>
Left atrial volume	Russo et al ⁴⁴	2013	Infarct	N/A	1.37 (1.04–1.80)

Stroke, Volume 47, Issue 3, March 2016; Pages 895-900

Studies Demonstrating an Association Between Markers of Abnormal Atrial Substrate and Incident Stroke Independently of Atrial Fibrillation

AF indicates atrial fibrillation; ECG, electrocardiographic; PACs, premature atrial contractions; PSVT, paroxysmal supraventricular tachycardia; and PTFV₁, P-wave terminal force in lead V₁.

'Hazard ratio (HR) and 95% confidence interval (CI) for the primary outcome of death or stroke.

[†]HR (95% CI) associated with a diagnosis of PSVT.

⁺HR (95% Cl) per 1-standard deviation (SD) increase in PTFV₁. [§]Infarct refers to silent brain infarcts detected on magnetic resonance

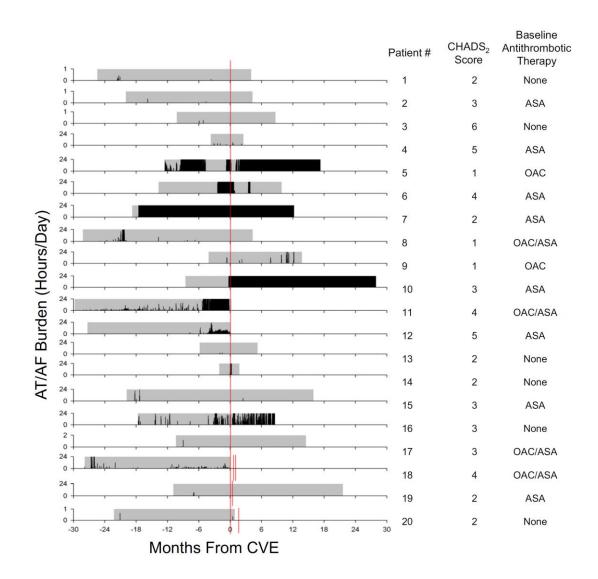
imaging. ^{II}HR (95% CI) associated with excessive PACs, defined as ≥30 PACs per hour.

#HR (95% CI) associated with ECG-defined left atrial abnormality (PTFV,≥4000 ms µV).

"HR (95% CI) per 10-mm increase in left atrial size in men. The association was not significant in women (HR, 1.4; 95% CI, 0.9–2.1).

^{††}Odds ratio (OR) and 95% CI per 10 mm/1.7 m² increase in the left atrial diameter divided by body surface area (left atrial index).

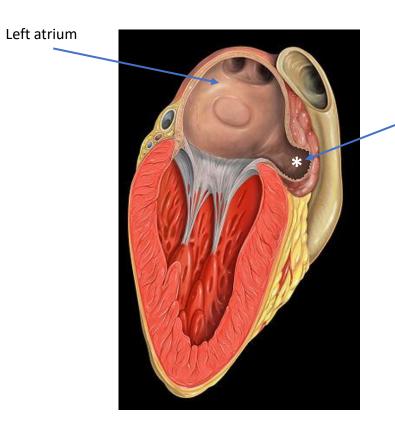
[#]HR (95% CI) per 1-SD increase in left atrial size.


^{§§}HR (95% CI) for left atrial volume ≥32 mL/m².

"HR (95% CI) per 1-SD increase in left atrial minimum volume.

##OR (95% CI) for each 1-SD increase in the left atrial ejection fraction.

$AF \rightarrow CVA$ Mechanisms?



Heart Rhythm 2011;8:1416 -1423

Stasis in the LAA?

• The Left Atrial Appendage

91% of thrombus accumulation originates in the LAA (Blackshear et al. Ann Thorac Surg 1996)

Left atrial appendage where stagnation of blood occurs and clots form which may lead to embolic stroke

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

Pharmacologic Prevention of CVA in AF

Sunny Kapur MD

Cardiac Electrophysiology Brigham and Women's Hospital Harvard Medical School

Outline

- The relationship between Afib and Stroke
- Pharmacologic Prevention of CVA in AF
- Non-pharmacologic Prevention of CVA in AF
- Preventing Recurrent AF strokes

Regardless...the observation exists

Stroke Risk Stratification in AF

	2
Risk Factor	Score
Congestive heart failure	1
H ypertension	1
<mark>A</mark> ge ≥75 y	1
Diabetes	1
<mark>S</mark> troke	2

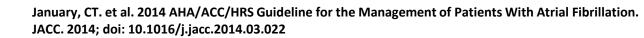
CHADS₂

Total Score	Annual Risk	of Stroke (%)
0	1.9	0
1	2.8	1.3
2	4.0	2.2
3 сна	ADS ₂ - 5.9	3.2
4	8.5	4.0
5	12.5	6.7
6	18.2	9.8
7	10.2	9.6
8		6.7
9		15.2

BWH WE CULLES

CHA₂DS₂-VASc

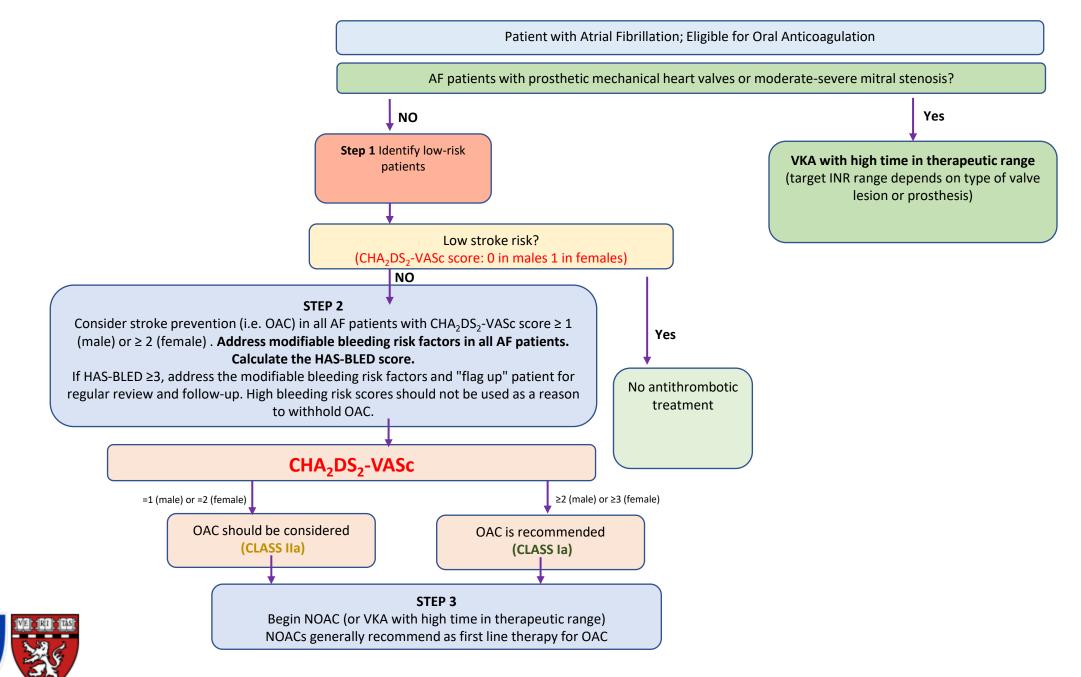
Risk Factor	Score
Congestive heart failure	1
Hypertension	1
A ge ≥75 y	2
Diabetes	1
S troke	2
Vascular disease (MI, PAD, aortic atherosclerosis)	1
AGE 65-74 y	1
Sex category (female)	1

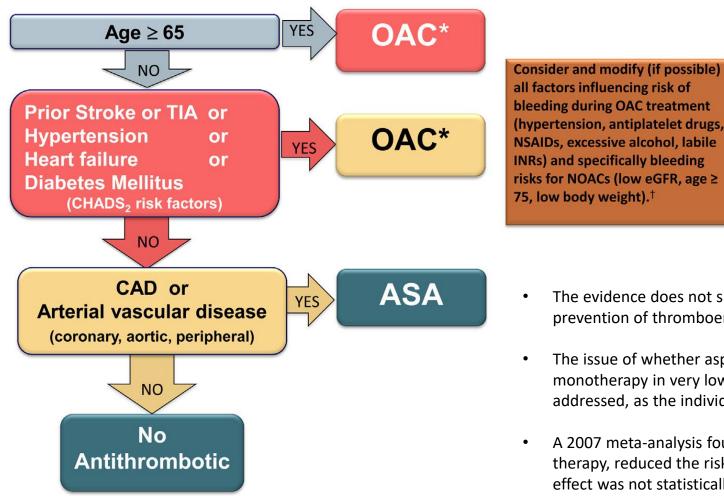

CHA₂DS₂-VASc seems to have 2 major benefits: it more accurately identifies truly low risk pts: it reclassifies many CHADS₂ 0-1 pts to a higher Stroke risk

2014 ACC/AHA/HRS Treatment Guidelines to Prevent Thromboembolism in Patients with AF

• Assess stroke risk with CHA₂DS₂-VASc score

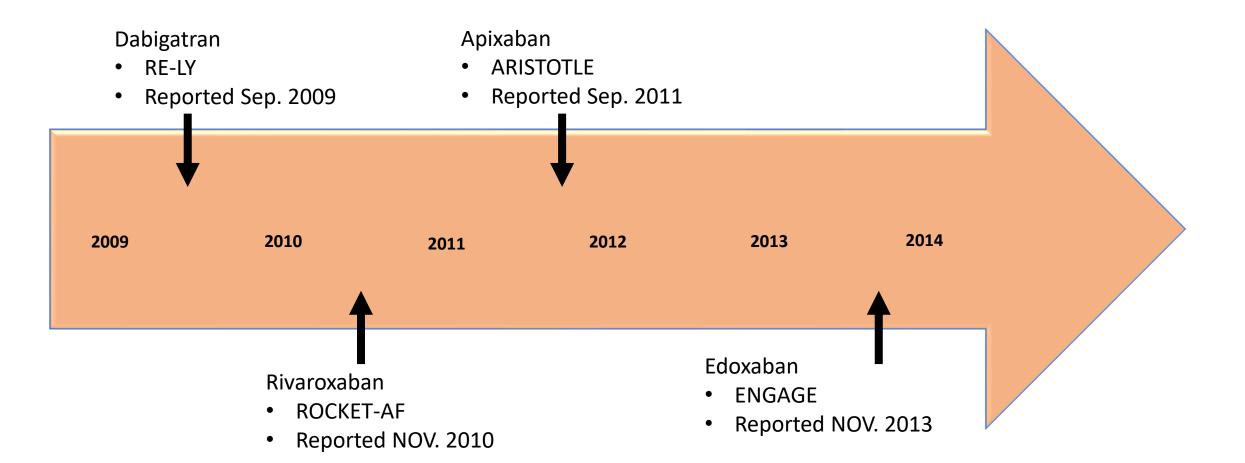
- Score 1: Annual stroke risk 1%, anticoagulants or aspirin <u>may be considered</u>
- Score ≥2: Annual stroke risk 2%-15%, anticoagulants <u>are recommended</u>
- Balance benefit vs. bleeding risk


2014 AHA/ACC/HRS Attr		
2014 AHA/AC		for the Management of Patients With Fibrillation
		ardiology/American Heart Association Task s and the Heart Rhythm Society
Devei	loped in Collaboration Wi	ith the Society of Thoracic Surgeons
	WRITING COM	MITTEE MEMBERS*
		MD, PhD, FACC, Chan MACC, FAHA, Vice Chan*
Joseph S. Alpert, MD, FA Hugh Calkins, MD, FAC	C. FAHA, FHRS*:5	Michael E. Field, MD, FACC, FHRS+ Katherine T. Murray, MD, FACC, FAHA, FHRS+
Joseph C. Cleveland, Jr, M Joaquin E. Cigarroa, MD, Jamie B. Conti, MD, FAG	FACC	Ralph L. Sacco, MD, FAHA† William G, Stevenson, MD, FACC, FAHA, FHRS*† Patrick J, Tchou, MD, FACC;
Patrick T. Ellinor, MD, Pl Michael D. Ezekowitz, M	hD, FAHA;	Cynthia M, Tracy, MD, FACC, FAHA†



oral

oral



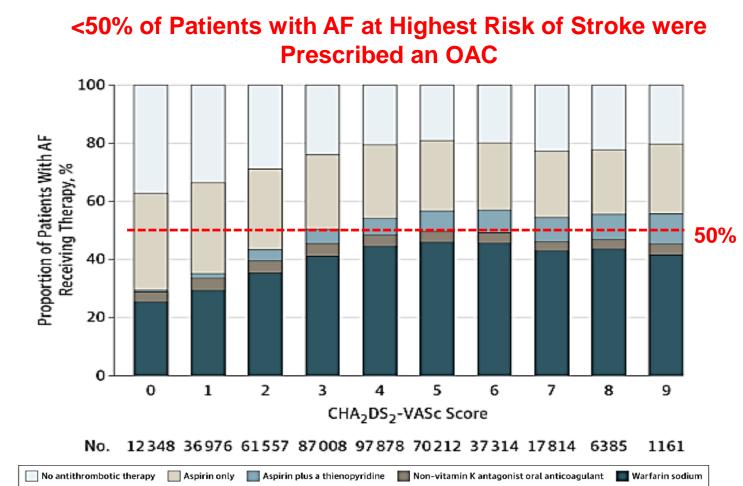
The "CCS Algorithm" for OAC Therapy in AF

- risks for NOACs (low eGFR, age ≥
 - The evidence does not support the use of aspirin as monotherapy for the prevention of thromboembolic events in patients with AF.
- The issue of whether aspirin could be a reasonable antithrombotic monotherapy in very low-risk patients (CHADS2 = 0) has not been well addressed, as the individual trials enrolled very few such patients.
- A 2007 meta-analysis found that aspirin, compared to placebo or no therapy, reduced the risk of stroke by about 20 percent, although this effect was not statistically significant (relative risk reduction 19 percent; 95% CI -1.0 to 35.0).
- Further, aspirin had little effect on reducing the risk of disabling stroke.

Priority #4 – Cardioembolic stroke prevention

Novel Anticoagulants for Stroke Prevention in Atrial Fibrillation

Connolly, Stuart J., et al. New England Journal of Medicine 361.12 (2009): 1139-1151. Patel, Manesh R., et al. New England Journal of Medicine 365.10 (2011): 883-891. Granger, Christopher B., et alNew England Journal of Medicine 365.11 (2011): 981-992. Giugliano, Robert P., et al. New England Journal of Medicine 369.22 (2013): 2093-2104.


Anticoagulation Regimen – Balancing Risks and Benefits

Recom	mendati	ions for Selecting an Anticoagulant Regimen—Balancing Risks and Benefits
COR	LOE	Recommendations
I	A	 NOACs (dabigatran, rivaroxaban, apixaban, and edoxaban) are recommended over warfarin in NOAC-eligible patients with AF (except with moderate-to-severe mitral stenosis or a mechanical heart valve). NEW: Exclusion criteria are now defined as moderate-to-severe mitral stenosis or a mechanical heart valve. When the NOAC trials are considered as a group, the direct thrombin inhibitor and factor Xa inhibitors were at least noninferior and, in some trials, superior to warfarin for preventing stroke and systemic embolism and were associated with lower risks of serious bleeding.

Oral Anticoagulation is Standard of Care, But Not for All

NCDR Pinnacle Registry: >400,000 Outpatients w AF

Warfarin

Bleeding risk Daily regimen High non-adherence rates Regular INR monitoring Food and drug interaction issues Complicates surgical procedures

Novel Oral Anticoagulants Bleeding risk Daily regimen High non-adherence rates Complicates surgical procedures Lack of reversal agents High cost

1. Hsu, J et al. JAMA Cardiol. Published online March 16, 2016. doi:10.1001/jamacardio.2015.0374

www.cardiometabolichealth.org

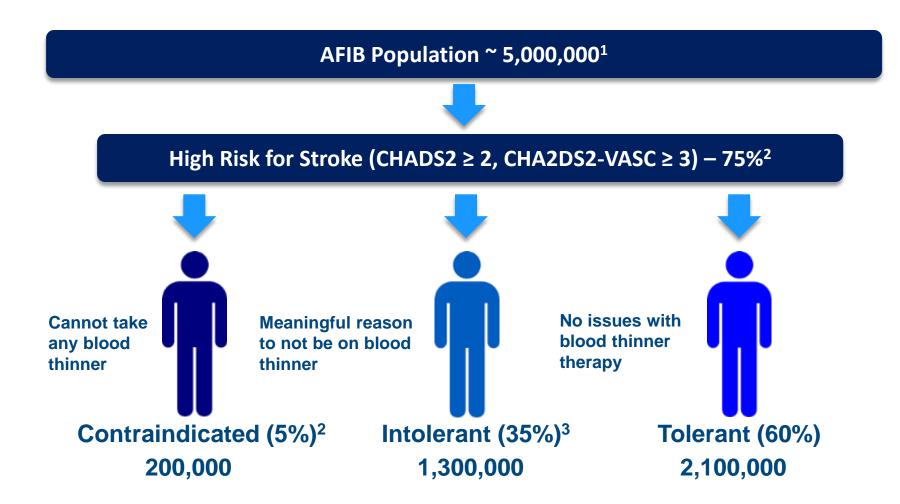
Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

Non-pharmacologic Prevention of CVA in AF

Sunny Kapur MD


Cardiac Electrophysiology Brigham and Women's Hospital Harvard Medical School

Outline

- The relationship between Afib and Stroke
- Pharmacologic Prevention of CVA in AF
- Non-pharmacologic Prevention of CVA in AF
- Preventing Recurrent AF strokes

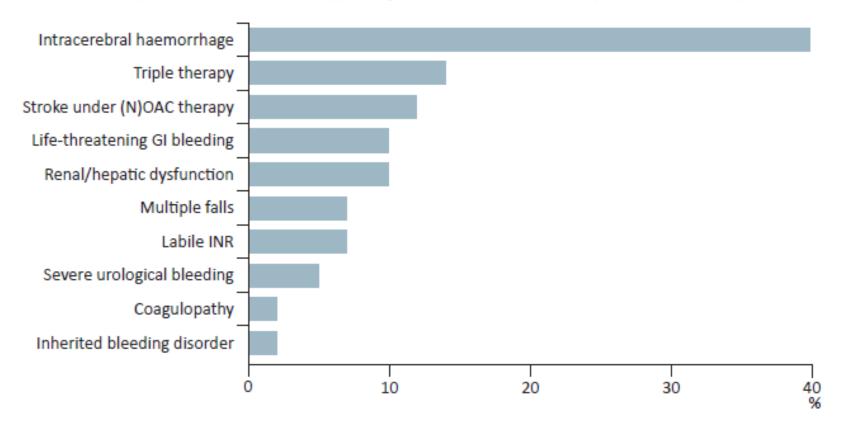
The Problem with Anticoagulation

BWH Mat RO ES

1. the AnTicoagulation and Risk Factors In Atrial Fibrillation (ATRIA) StudyJAMA. 2001;285(18):2370-2375. doi:10.1001/jama.285.18.23702. Oral AnticoagulantTherapy Prescription in Patients With Atrial Fibrillation Across the Spectrum of Stroke RiskJAMA Cardiol. Published online March 16,2016.doi:10.1001/jamacardio.2015.03743.PINNACLE Q4 2015 national summary report, Data on File

Bleeding Risks Compound Over Time

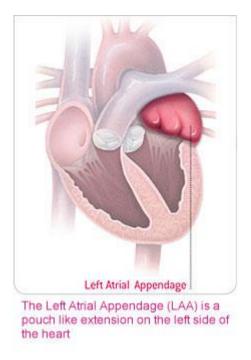
CHA ₂ DS ₂ - VASc* Score	Annual % Stroke Risk	HAS-BLED** Score	Annual % Bleed Risk
0	0	0	0.9
1	1.3	1	3.4
2	2.2	2	4.1
3	3.2	3	5.8
4	4.0	4	8.9
5	6.7	5	9.1

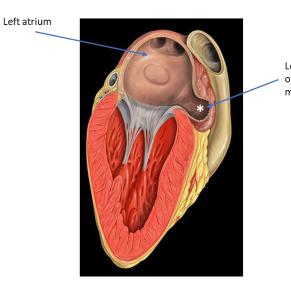

Table 1: Stroke and bleeding risk stratification with the CHA2DS2-VASc and HAS-BLED schemas

CHA ₂ DS ₂ -VASc	Score	HAS-BLED	Score
<u>C</u> ongestive heart failure/LV dysfunction	1	Hypertension i.e. uncontrolled BP	1
<u>H</u> ypertension	1	Abnormal renal/liver function	1 or 2
<u>A</u> ged ≥75 years	2	Stroke	1
<u>D</u> iabetes mellitus	1	Bleeding tendency or predisposition	1
<u>S</u> troke/TIA/TE	2	Labile INR	1
Vascular disease [prior MI, PAD, or aortic plaque]	1	Age (e.g. >65)	1
Aged 65-74 years	1	Drugs (e.g. concomitant aspirin or NSAIDSs) or alcohol	1
<u>Sex category [i.e. female gender]</u>	1		
Maximum score	9		9

Relative or Absolute Contraindications

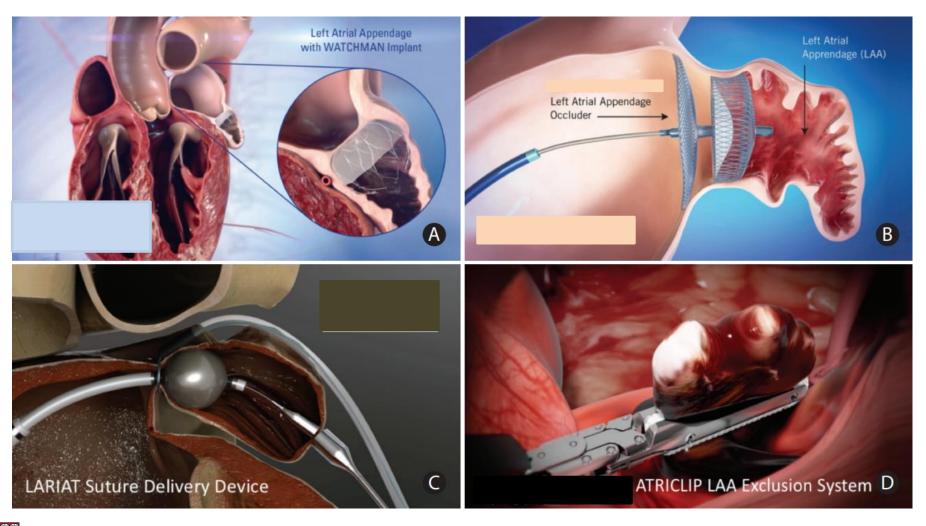
Indications for percutaneous left atrial appendage closure in our cohort, expressed as % of all patients.




*Lifestyle contraindications

So what do we do?

- Over 70 years ago, we realized that most clots form in one specific corner of the heart the left atrial appendage or LAA
 - 91% of thrombus accumulation originates in the LAA


Left atrial appendage where stagnation of blood occurs and clots form which may lead to embolic stroke

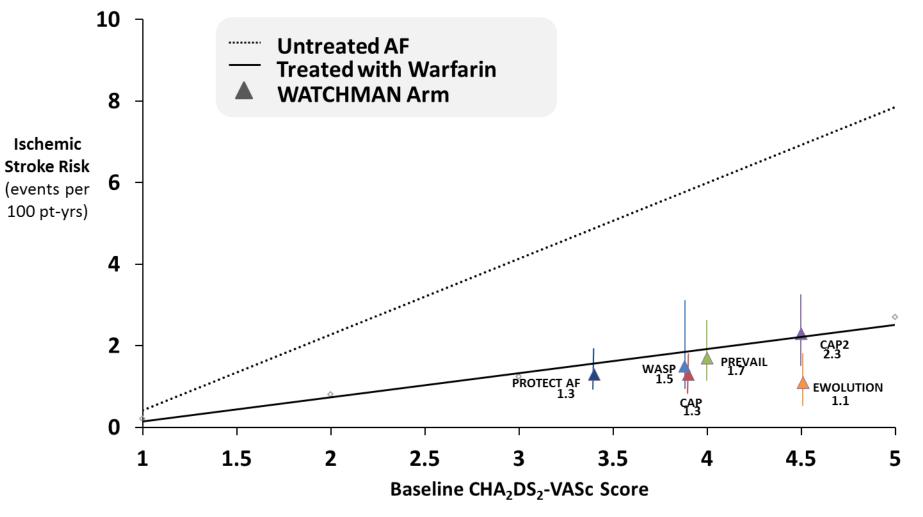
- Open heart surgery to remove the LAA has been done for decades
 - The first report was from two patients with AF in <u>1949.</u>

The development of minimally invasive LAA occlusion/ligation devices started...

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

The first device approved in the USA: WATCHMAN

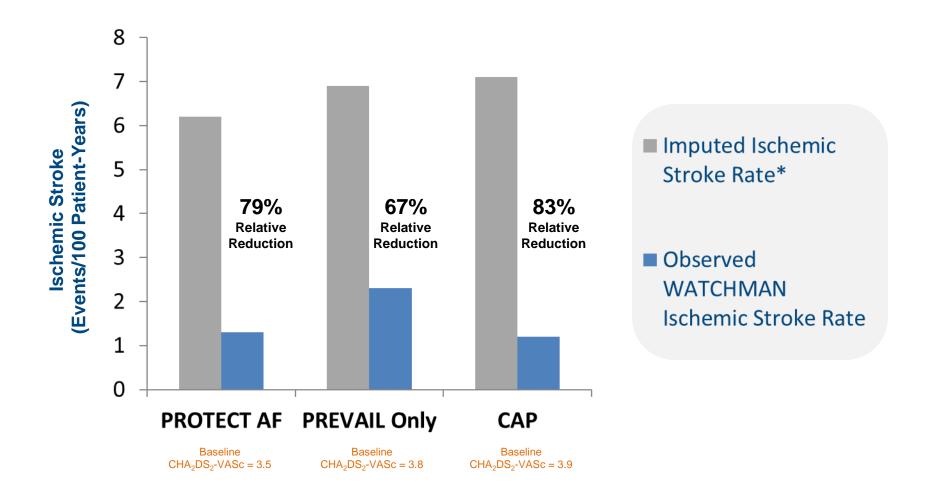
WATCHMAN Trial Timeline


Patient Level Meta-Analysis PROTECT AF, PREVAIL 5 Years

From the PREVAIL and PROTECT AF Trials. J. Am Coll Cardiol. 2017; In Press

		HR	p-value
Efficacy	⊷ ♦ <u>↓</u> •	0.82	0.3
All stroke or SE		0.96	0.9
Ischemic stroke or SE	·	1.7	0.08
Hemorrhagic stroke		0.2	0.0022
Ischemic stroke or SE >7 days	·	1.4	0.3
Disabling/Fatal Stroke (MRS change of ≥2)	i	0.41	0.03
Non-Disabling Stroke		1.79	0.1
CV/unexplained death		0.59	0.03
	1		
All-cause death		0.73	0.04
Major bleed, all		0.91	0.6
Major bleeding, non procedure-related		0.48	0.0003
0.01 Favors WATO		10 arfarin y VY, Doshi SK, Kar S, et a	al. 5-Year Outcomes Aft

WATCHMAN Comparable to warfarin for Ischemic Stroke in 2 RCT, 4 Registries



BWH Mar Rate

Source: . Reddy VY, Doshi SK, Kar S, et al. 5-Year Outcomes After Left Atrial Appendage Closure: From the PREVAIL and PROTECT AF Trials. J. Am Coll Cardiol. 2017; In Press

WATCHMAN[™] Device Reduces Ischemic Stroke Over No Therapy

* Imputation based on published rate with adjustment for CHA2DS2-VASc score (3.0); Olesen JB. Thromb Haemost (2011)

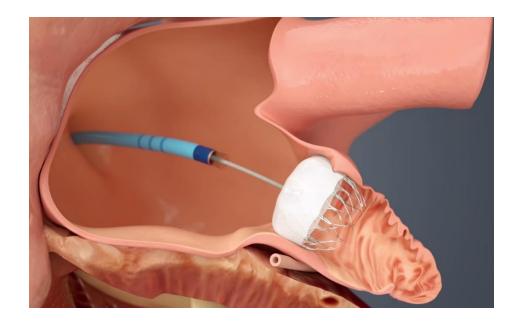
Is LAA occlusion right for you?

Patient Selection Considerations

FDA Indication

- The WATCHMAN Device is indicated to reduce the risk of thromboembolism from the left atrial appendage in patients with non-valvular atrial fibrillation who:
 - Are at increased risk for stroke and systemic embolism based on CHADS₂ or CHA₂DS₂-VASc scores and are recommended for anticoagulation therapy;
 - Are deemed by their physicians to be suitable for warfarin; and
 - Have an appropriate rationale to seek a non-pharmacologic alternative to warfarin, taking into account the safety and effectiveness of the device compared to warfarin

CMS Coverage


- CHADS2 score ≥2 or a CHA2DS2-VASc score ≥3
- Patients must be suitable for short-term warfarin, but deemed unable to take long-term oral anticoagulation
- Documented evidence of a formal shared decision interaction between the patient and an independent, non-interventional physician

Left Atrial Appendage Closure

- LAA occlusion is an option to reduce the risk of stroke in patient with AF
- LAA occlusion is reserved for patients who "cannot" take anticoagulation
- WATCHMAN and Amulet are minimally invasive procedures to occlude the LAA

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

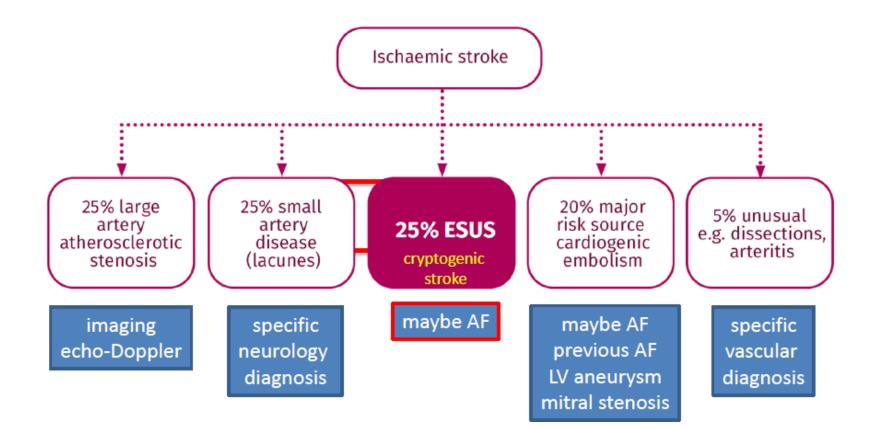
Preventing Recurrent AF Strokes

Sunny Kapur MD

Cardiac Electrophysiology Brigham and Women's Hospital Harvard Medical School

Outline

- The relationship between Afib and Stroke
- Pharmacologic Prevention of CVA in AF
- Non-pharmacologic Prevention of CVA in AF
- Preventing Recurrent AF strokes



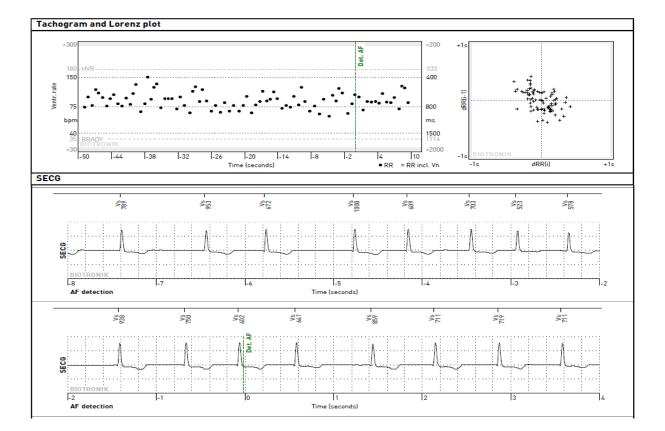
An ounce of prevention...

- 68 y/o man with h/o diabetes, HTN, TIA, admitted with stroke
- Head MRI showed multiple foci of restricted diffusion within mid and posterior aspect of left MCA distribution. CTA showed no stenosis of major arteries of head and neck
- TEE mild MR, no PFO
- EKG and telemetry normal.
- Implantable loop recorder implanted.

The problem: 25% of ischemic strokes are cryptogenic

CRYSTAL-AF study results

CRYSTAL-AF study results



Months since randomization

Sanna T. et al. NEJM. 2014: 2478-2846

Indications / Use Cases for ILRs

2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation

Recommendations for Device Detection of AF and Atrial Flutter		
COR	LOR	Recommendations
Ι	B-NR	In patients with cardiac implantable electronic devices (pacemakers or implanted cardioverter-defibrillators), the presence of recorded atrial high-rate episodes (AHREs) should prompt further evaluation to document clinically relevant AF to guide treatment decisions
lla	B-R	In patients with cryptogenic stroke (i.e., stroke of unknown cause) in whom external ambulatory monitoring is inconclusive, implantation of a cardiac monitor (loop recorder) is reasonable to optimize detection of silent AF

Can this be extrapolated to screening for Afib in patients prior to stroke?

Treatment Screening Detection ANTICOAGULATION RHYTHM CONTROL CATHETER ABLATION BARRIERS BARRIERS Data Overload Healthcare access Ö. O. Longitudinal follow-up **False Positives** 0 Ó, **Provider support** Potential overtreatment 0 Ö. Future Healthcare cost PATIENT SELECTION 0 WEARABLE TECHNOLOGY 0 TELEMEDICINE Ó.

HEALTHCARE POLICY

0

Atrial Fibrillation

Summary

- Atrial fibrillation is a heterogenous disorder that requires tailoring of clinical therapy
- The relationship between AF and cardio embolism is well documented if poorly understood.
- Pharmacologic and Non-pharmacologic approaches to cardioembolic protection of AF patients are important considerations
- Identifying patients with AF and instituing appropriate therapy prior to a stroke (or recurrent stroke) is an important goal

Supplemental Reference Slide

- Pritchett EL. Management of atrial fibrillation. N Engl J Med 1992; 326:1264.
- Atrial fibrillation: current understandings and research imperatives. The National Heart, Lung, and Blood Institute Working Group on Atrial Fibrillation. J Am Coll Cardiol 1993; 22:1830.
- Lip GY, Metcalfe MJ, Rae AP. Management of paroxysmal atrial fibrillation. Q J Med 1993; 86:467.

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

Sunny Kapur MD

ARS

Cardiac Electrophysiology Brigham and Women's Hospital Harvard Medical School

Question #1

A 70-year-old woman with type 2 diabetes mellitus and rheumatic mitral stenosis is evaluated for dyspnea and fatigue. She has a history of atrial fibrillation that has resulted in these symptoms in the past. She has had successful cardioversions, most recently about 2 years ago. She has hypertension controlled with medication. She also has mild left-ventricular dysfunction related to coronary artery disease and history of myocardial infarction. Her current medications include atenolol, lisinopril, aspirin, atorvastatin, and insulin. Physical examination demonstrates an irregularly irregular rhythm with a heart rate of 78 beats per minute. Blood pressure is 130/80 mm Hg. The cardiovascular and pulmonary examinations are otherwise unremarkable.

What medication should this patient receive for at least 3-4 weeks before cardioversion?

- A. Warfarin
- B. Clopidogrel
- C. Rivaroxaban
- D. No additional medication is needed

Answer #1

A. Warfarin

- B. Clopidogrel
- C. Rivaroxaban
- D. No additional medication is needed

Prior to cardioversion, anticoagulation prevents cardioembolic risk. With rheumatic heart disease warfarin is the preferable choice. Dual antiplatelet therapy is inferior to warfarin for anticoagulation in atrial fibrillation.

Question #2

A 70-year-old man with diabetes, hypertension and arthritis presents with a stroke. No clear etiology is defined. He is discharged on aspirin and Plavix. External ambulatory monitoring shows normal sinus rhythm with frequent PACs.

What would by the best next step?

- A. Initiate warfarin
- B. Initiate apixaban
- C. Implantable loop recorder
- D. Permanent Pacemaker
- E. No additional changes

Answer #2

- A. Initiate warfarin
- B. Initiate apixaban
- C. Implantable loop recorder
- D. Permanent Pacemaker
- E. No additional changes

An implantable loop recorder to look for atrial fibrillation after cryptogenic stroke is a reasonable next step. Without documented AF, triple anticoagulation therapy would not be of benefit. There is no indication for a pacemaker described.