www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

Pathophysiology and Epidemiology of Chronic Kidney Disease

George Bakris, MD Professor of Medicine University of Chicago Medicine

Kidney Function: An Overview

Overview of Pathophysiology

• Can't Discuss Pathophysiology of Kidney Disease in General BECAUSE unique to each disease that causes it.

Commonalities among causes of CKD include:

- >Inflammation resulting in nephron loss
- >Inflammation resulting in loss of interstitium
- Ischemia resulting in limited blood flow to parts of the nephron

Stages in Progression of Chronic Kidney Disease and Therapeutic Strategies

Diabetes and Hypertension are Leading Causes of Kidney Failure

Incident ESRD rates, by primary diagnosis, adjusted for age, gender, & race.

Representative examples of the morphologic lesions in DN. (A) Glomerulus showing only mild ischemic changes, with splitting of Bowman's capsule.

Effects on The Kidneys

- Glomerular sclerosis leading to impaired kidney function and finally end stage kidney disease
- Ischemic kidney disease especially when renal artery stenosis is the cause of HTN

Benign Nephrosclerosis: Hyaline Arteriolosclerosis

CKD is Common Among US Adults

Fast Stats

- More than 1 in 7, that is 15% of US adults or 37 million people, are estimated to have CKD
- As many as 9 in 10 adults with CKD *do not know* they have CKD
- About 2 in 5 adults with severe CKD *do not know* they have CKD

15% of US adults are estimated to have chronic kidney disease—that is about 37 million people.

Percentage of US Adults Aged 18 Years of Older with CKD*

*CKD stages 1-4 using data from the 2015-2018 National Health and Nutrition Examination Survey and the CKD Epidemiology Collaboration (CKD-EPI) equation

https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html

Adjusted ESRD Incidence by Age, 2000-2018

Data Source: USRDS: 2020 Annual Data Report (https://adr.usrds.org/2020/end-stage-renaldisease/1-incidence-prevalence-patient-characteristics-and-treatment-modalities)

Reported Causes of End-Stage Renal Disease in the United States

*Includes polycystic kidney disease, among other causes.

Adjusted ESRD Incidence by Race, 2000-2018

Data Source: USRDS: 2020 Annual Data Report (https://adr.usrds.org/2020/end-stage-renaldisease/1-incidence-prevalence-patient-characteristics-and-treatment-modalities)

Number of People Receiving Renal Replacement Therapy Is Projected to Double

Cardiovascular Disease in Patients With or Without Chronic Kidney Disease

House AA Am J Kidney Dis 2018;72:284

Age-Standardized Rates of Death from Any Cause (Panel A) and Cardiovascular Events (Panel B), According to the Estimated GFR among 1,120,295 Ambulatory Adults

Cardiovascular Mortality in the General Population and in ESRD Treated by Dialysis

Dialysis Survival is Shorter than Common Cancers

Unadjusted 10-year survival for all-cause mortality in Canada n = 33,500 incident dialysis patients; 532,452 incident cancer patients

CKD is Highly Prevalent in the General Population

Adapted from the National Kidney Foundation, 2002

17 Year Follow-Up from VA Hypertension Clinics on ESRD

H. M. Perry, Jr., et.al Hypertension 25 (4 Pt 1):587-594, 1995.

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Stages of CKD and Associated Risks

George Bakris, MD Professor of Medicine University of Chicago Medicine

What are normal GFR values for adults? NHANES III

Age (Years)	Average GFR
20-29	116 mL/min/1.73 m ²
30-39	107 mL/min/1.73 m ²
40-49	99 mL/min/1.73 m ²
50-59	93 mL/min/1.73 m ²
60-69	85 mL/min/1.73 m ²
70+	75 mL/min/1.73 m ²

In patients >70 an eGFR b/w 60 and 90 could be normal

Composite Ranking for Relative Risks by glomerular filtration rate (GFR) and Albuminuria (Kidney Disease: Improving Global Outcomes (KDIGO) 2009

		Albuminuria stages, description and range (mg/g)						
Composite ranking for relative risks by GFR and albuminuria (KDIGO 2009			A1		A2	A3		
			Optimal and high- normal		High	Very high and nephrotic		
		<10	10-29	30-299	300-1999	≥2000		
GFR stages, description and range (ml/min per 1.73m ²⁾ G3b G4 G5	High and	>105						
	GI	optimal	90-104					
	63	Mild	75-89					
	GZ		60-74					
	G3a	Mild- moderate	45-59					
	G3b	Moderate -severe	30-44					
	G4	Severe	15-29					
	G5	Kidney failure	<15					

Age-Standardized Rates of Death from Any Cause (Panel A) and Cardiovascular Events (Panel B), According to the Estimated GFR among 1,120,295 Ambulatory Adults

Heart Failure by eGFR and uACR

Management of Modifiable Risk Factors & **Complications of CKD**

- Hypertension Diabetes Mellitus Impacts CKD progression & morbidity Dyslipidemia CKD Metabolic acidosis CKD Anemia (Stage 4-5)
 - CKD Bone and Mineral Disorder (Stage4-5)

Impacts morbidity

Classification of CKD

CKD is classified based on:			Albuminuria categories Description and range			
			A1	A2	A3	
 Cause (C) GFR (G) Albuminuria (A) 				Normal to mildly increased	Moderately increased	Severely increased
				<30 mg/g <3 mg/mmol	30-299 mg/g 3-29 mg/mmol	≥300 mg/g ≥30 mg/mmol
	G1	Normal or high	≥90	1 if CDK	Treat 1	Refer* 2
GFR categories (ml/min/1.73m ²) Description and range	G2	Mildly decreased	60-89	1 if CDK	Treat 1	Refer* 2
	G3a	Mildly to moderately decreased	45-59	Treat 1	Treat 2	Refer 3
	G3b	Moderately to severely decreased	30-44	Treat 2	Treat 3	Refer 3
	G4	Severely decreased	15-29	Refer* 3	Refer* 3	Refer 4+
	G5	Kidney failure	<15	Refer 4+	Refer 4+	Refer 4+

Levy AS, et al. American Journal of Kidney Diseases 2013;61.5: 686-688

Observational Studies of Early versus Late Nephrology Consultation

Variable	Early referral Mean (SD)	Late referral mean (SD)	P value
Overall mortality %	11 (3)	23 (4)	<0.0001
1-year mortality %	13 (4)	29 (5)	0.028
Hospital stay, days	13.5 (2.2)	25.3 (3.8)	0.0007
KRT serum albumin (mg/dL)	3.62 (0.05)	3.40 (0.03)	0.001
KRT hematocrit %	30.54 (0.18)	29.71 (0.10)	0.013

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

Screening, Diagnosis, and Prediction of CKD Progression

> George Bakris, MD Professor of Medicine University of Chicago Medicine

What Can YOU do to MARKEDLY slow CKD progression at Stage 2 CKD??

Changes in Selected Risk Factors in the Intensive-Therapy Group and the Conventional-Therapy Group during Follow-up

Gaede P, et.al. N. Engl J Med. 2003;348:383-93.

Kaplan–Meier Estimates of the Composite End Point of Death from Cardiovascular Causes, (A) and Relative Risk of Progression of Nephropathy, Retinopathy, and Autonomic and Peripheral Neuropathy (B)

Gaede P, et.al. N. Engl J Med. 2003;348:383-93.

Cumulative mortality (a) and cumulative incidence of the composite CV or death endpoint (b)

What is the Role of Albuminuria for Staging and Treatment?

• Must be included or staging will be incorrect at least 50% of the time.

• Helps identify people at risk who may have a reasonable GFRcase to come.

Who to Screen?

- Those with diabetes it is MANDATED per guidelines that you check it annually if not more frequently if treating
- Those with hypertension it is suggested it be checked every 2-3 years
- In those without diabetes or hypertension that have a reduced GFR <60 ml/min/1.73m² it is suggested to check as a screen.

How Should you Check it?

- First morning void is best when fasting. If elevated should be repeated within the week to ensure elevated. (many things can give false positive increases. Also, drugs like NSAIDs can give false negative results as they decrease albuminuria).
- If patient has a fever or other non-renal inflammatory condition like a flare of Rheumatoid arthritis should wait until flare is resolved.
- If you check it and the patient has moderately increased albuminuria (microalbuminuria) then what.

Ischemic Heart Disease Relationship Between Microalbuminuria and BP

Use of MAU, CRP, and BNP as Predictors of Mortality and CV Events

Adjusted for age, sex, smoking, DM, HTN, Afib, LVEF<50%, LVH, total cholesterol, serum creatinine. Mortality analysis based on 91 deaths, and CV event data based on 63 events due to missing covariates. The 80th percentile corresponds to values more than 5.85 pg/mL for NT-proBNP, 5.76 mg/L for CRP, and 18.4 mg/g for MAU.

Kistorp K, et al. JAMA. 2005;293:1609-1616.

Distribution of 2-year albumin-to-creatinine ratio (ACR) fold changes

Carrero JJ et.al. Kidney Int 2017;91:244-251

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

(ag

Treatment of CKD, Stages 1-4

George Bakris, MD Professor of Medicine University of Chicago Medicine

What if you have >300-then you have HIGH CV Risk and Clear evidence of CKD?

Prevalence of CKD in the US population by eGFR and albuminuria stages

>105

90-104

75-89

60-74

45-59

30-44

15-29

<15

72.2

18.8

- Percentage of US population by eGFR and albuminuria category (KDIGO 2009 and NHANES III (1988 1994)
- Combined stages G3-G5 and A2-A3 account for 13.9% of the population
- Stages G3-G5 and A2-A3 account for 6.7% and 9.1% of the population, resp.

G1

G2

G3a

G3b

G4

G5

eGFR

stages,

description,

and range

 $(ml/min/1.73m^2)$

Increased and

optimal

Mild

Mild-moderate

Moderate-severe

Severe

ESRD

All

Albuminuria stages, description, and range (mg/g) [by UACR]						
	A3	A2	A1			
All	Very high	High	Optimal and high-optimal			
	>300	30-299	10-29	<10		
31.4	0.1	1.9	5.7	23.6		
26.7	0.3	1.7	4.7	20		
23	0.2	1.6	4.1	17.3		
12.2	0.1	1.3	2.7	8.2		
4.7	0.2	0.8	1.1	2.5		
1.5	0.2	0.4	0.4	0.6		
0.4	0.1	0.1	0.1	0.1		
0.1	0.1	0	0	0		

7.8

Levey AS, Coresh J. Lancet. 2012;379(9811):165-180.

1.3

100

What Do you do if you have Albuminuria and Why?

Six Month Change in Proteinuria from Baseline Predicts Outcome of Kidney Disease: Results from the AASK trial

Forest plot of individual study and meta-analyzed estimates of adjusted HR for ESKD associated with 2-year change in ACR

A 30% decrease in ACR

Coresh J et.al Lancet Diabetes Endocrinol 2019; 7: 115–27

Changes in Selected Risk Factors in the Intensive-Therapy Group and the Conventional-Therapy Group during Follow-up

Gaede P, et.al. N. Engl J Med. 2003;348:383-93.

Kaplan–Meier Estimates of the Composite End Point of Death from Cardiovascular Causes, (A) and Relative Risk of Progression of Nephropathy, Retinopathy, and Autonomic and Peripheral Neuropathy (B)

Gaede P, et.al. N. Engl J Med. 2003;348:383-93.

Cumulative mortality (a) and cumulative incidence of the composite CV or death endpoint (b)

Gaede P et.al. Diabetologia 2016;59:2298–2307

Pharmacological Agents that Reduce albuminuria and Have an FDA Indication for Slowing Nephropathy and/or CV Risk Reduction

- Maximally dosed RAS blockers-ACEi or ARBs
- SGLT2 inhibitors
- NS-MRA finerenone

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

Case of Diabetic Nephropathy with a Missed Opportunity

George Bakris, MD Professor of Medicine University of Chicago Medicine

The Story of a Celebrity

- 45 yr HM with Diabetes for 10 yrs, "reasonably well controlled"
- PMH:
 - Hypertension for 7 yrs. well controlled
 - BMI of 30
 - Dyslipidemia
- Fam Hx: Diabetes;
- Soc Hx: Sedentary; non-smoker; Comedian
- Exam
 - 139/85 Mild Obesity, rest fairly normal
- Labs
 - BUN 28, Creatinine 1.8, Urine protein (dipstick) 2+

MDRD GFR

- Diabetic, Hypertension, Metabolic Syndrome X
- Stage 3b CKD
- GFR = 44 ml/min/1.73 m² ; albuminuria 1gram/day

			Albuminuria categories Description and range			
CKD is classified based on:				A1	A2	A3
 GFR (G) Albuminuria (A) 			Normal to mildly increased	Moderately increased	Severely increased	
				<30 mg/g <3 mg/mmol	30-299 mg/g 3-29 mg/mmol	≥300 mg/g ≥30 mg/mmol
	G1	Normal or high	≥90	1 if CDK	Treat 1	Refer* 2
GFR categories (ml/min/1.73m ²) Description and range	G2	Mildly decreased	60-89	1 if CDK	Treat 1	Refer* 2
	G3a	Mildly to moderately decreased	45-59	Treat 1	Treat 2	Refer 3
	G3b	Moderately to severely decreased	30-44	Treat 2	Treat 3	Refer 3
	G4	Severely decreased	15-29	Refer* 3	Refer* 3	Refer 4+
	G5	Kidney failure	<15	Refer 4+	Refer 4+	Refer 4+

Mr. George Lopez

