CMHC Cardiometabolic Health Congress

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP)

NASH: Diagnosis & Risk Stratification

Christos S. Mantzoros, MD, DSc, PhD, h.c. mult. Professor, Harvard Medical School

Editor-in-chief, Metabolism, Clinical and Experimental

History and medical review	Investigations
Obesity T2D Metabolic syndrome Alcohol intake <14 drinks/wk. for women <21 drinks/wk. for men	Liver biochemistries (ALT, AST) Exclude/identify other liver diseases ^a HBV and HCV serology (and viral load) Auto antibodies (ANA, AMA, ASMA) Serum ferritin, A1AT Liver ultrasound: increased echogenicity
No known pre-existing liver disease	–

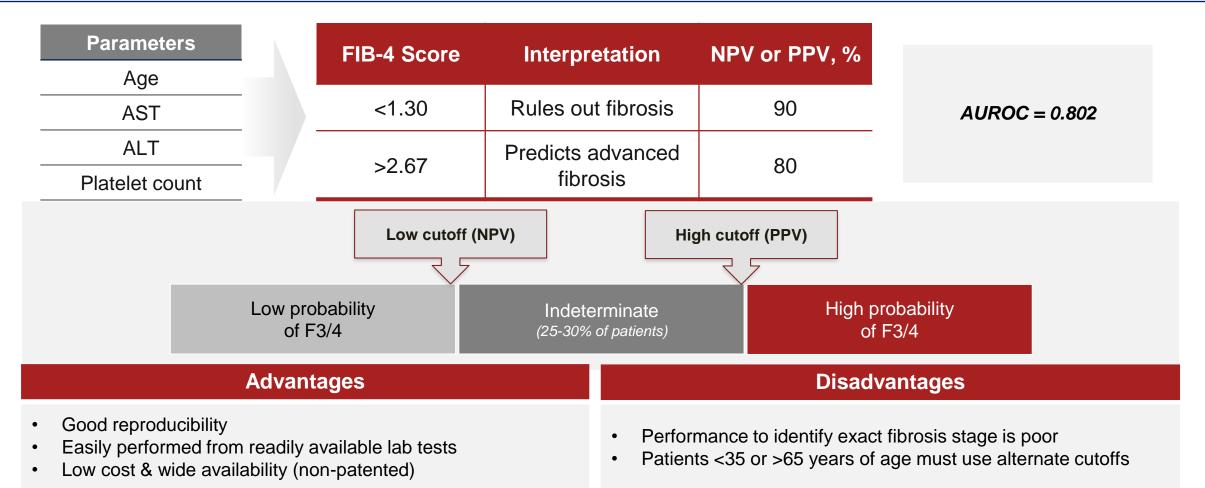
A1AT, α1 antitrypsin; AMA, antimitochondrial antibody; ANA, antinuclear antibody; ASMA, anti–smooth muscle antibody; HBV, hepatitis B virus; HCV, hepatitis C virus.

Liver US \rightarrow >80% accuracy for moderate or severe steatosis BUT suboptimal sensitivity for mild steatosis.

Risk stratification with noninvasive fibrosis scores (NAFLD fibrosis score or FIB-4 Index) to rule out advanced fibrosis.

If intermediate or high-risk further assessment may be required with elastography or direct fibrosis serum markers (e.g. propeptide of type III procollagen).

Hernaez R et al. Hepatology, 2011. Bril F et al. Liver Int, 2015. Bril F et al. Diabetes Care, 2020.

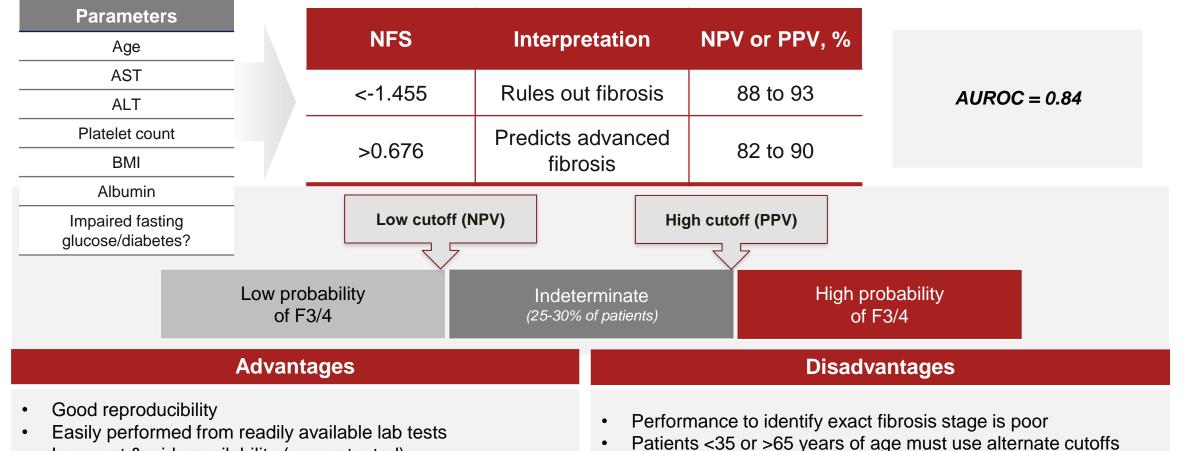

AASLD Guidelines Provide High Level Information on NITs

Noninvasive Tests (NITs)				
FIB-4 Index	Noninvasive scoring system based on several routine laboratory tests that help to estimate the amount of liver fibrosis.			
NAFLD Fibrosis Score (NFS)	Based on 6 readily available variables and is calculated using a published formula.			
ELF Test	An algorithm combining specific serum markers. Approved for commercial use in Europe but not available for clinical use in the US.			
VCTE (FibroScan)	Assesses liver stiffness via measurement of shear-wave velocity. Approved by the FDA in 2013 for use in adults and children with liver disease.			
MRE	Stiffness measurement through modified phase-contrast pulse sequence using magnetic resonance technology.			

- **AASLD Guidance Statements**
- **FIB-4** Index or **NFS** are clinically useful tools for identifying NAFLD patients with higher likelihood of having bridging fibrosis (F3) or cirrhosis (F4)
- Vibration controlled transient elastography (VCTE) or magnetic resonance elastography (MRE) are clinically useful tools for identifying advanced fibrosis in patients with NAFLD
- Clinical decision aids such as FIB-4 or NFS or VCTE can be used to identify those at low or high risk for advanced fibrosis (bridging fibrosis or cirrhosis)

- FIB-4 uses Age, AST, ALT, and Platelets
- NFS uses Age, AST, ALT, platelets, BMI, albumin, and presence of diabetes or elevated fasting glucose
- **ELF** (enhanced liver fibrosis test) uses hyaluronic acid (HA), procollagen-3 N-terminal peptide (P3NP), and tissue inhibitor of metalloproteinase-1 (TIMP-1).

FIB-4: A Simple and Available Tool to Determine Likelihood of Advanced Fibrosis (F3/4)


Majority (~60%) will fall into "low-risk" category when using predictive models to identify those at high risk for advanced fibrosis due to NASH

FIB-4 calculator available at http://gihep.com/calculators/hepatology/fibrosis-4-score/

ALT = alanine aminotransferase; AST = aspartate aminotransferase; AUROC = area under receiver operating characteristic; NPV = negative predictive value; PPV = positive predictive value

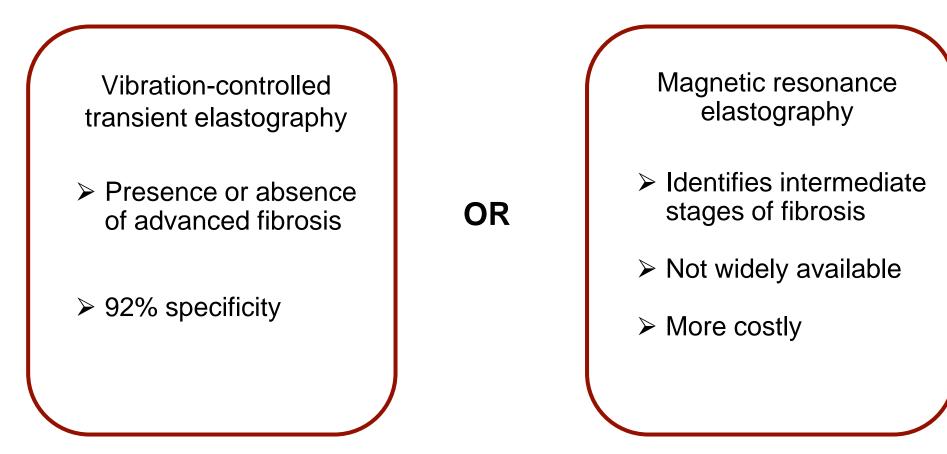
1. Shah AG et al. Clin Gastroenterol Hepatol, 2009. 2. Vilar-Gomez E et al. J Hepatol, 2018.

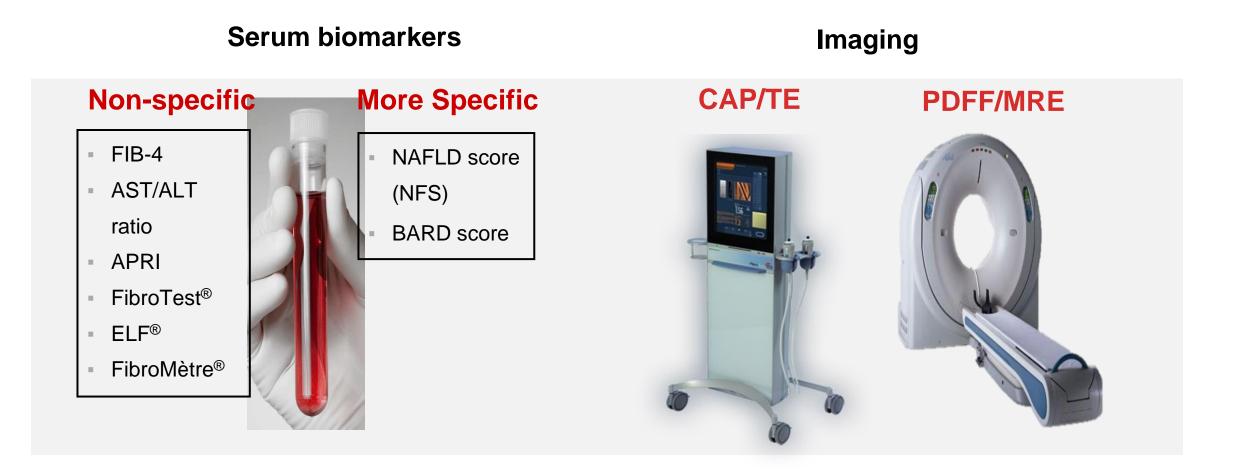
NAFLD Fibrosis Score (NFS): A Simple and Available Tool to Determine Likelihood of Advanced Fibrosis (F3/4)

• Low cost & wide availability (non-patented)

ity (non-patented)

Majority (~60%) will fall into "low-risk" category when using predictive models to identify those at high risk for advanced fibrosis due to NASH


ALT = alanine aminotransferase; AST = aspartate aminotransferase; AUROC = area under receiver operating characteristic; BMI = body mass index; NFS= NAFLD Fibrosis Score;


NPV = negative predictive value; PPV = positive predictive value.

1. Angulo P et al. Hepatology, 2007. 2. Vilar-Gomez E et al. J Hepatol, 2018.

Accurate Fibrosis Staging

Accurate fibrosis staging provides information regarding prognosis, need for pharmacotherapy, intensive lifestyle modification and/or bariatric surgery, and screening/surveillance for varices and HCC.

AST = aspartate aminotransferase; ALT = alanine aminotransferase; APRI = aspartate aminotransferase to platelet ratio index; CAP = controlled attenuation parameter; FIB-4 = fibrosis-4 score; ELF = enhanced liver fibrosis; MRE = magnetic resonance elastrography; PDFF = proton density fat fraction; TE= transient elastography.

www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

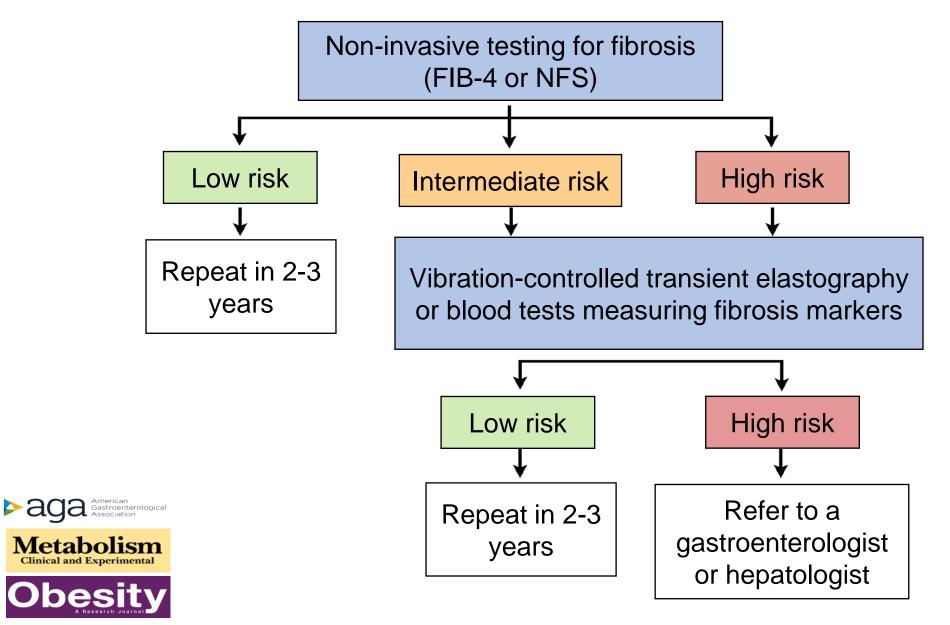
Certified Cardiometabolic Health Professional (CCHP)

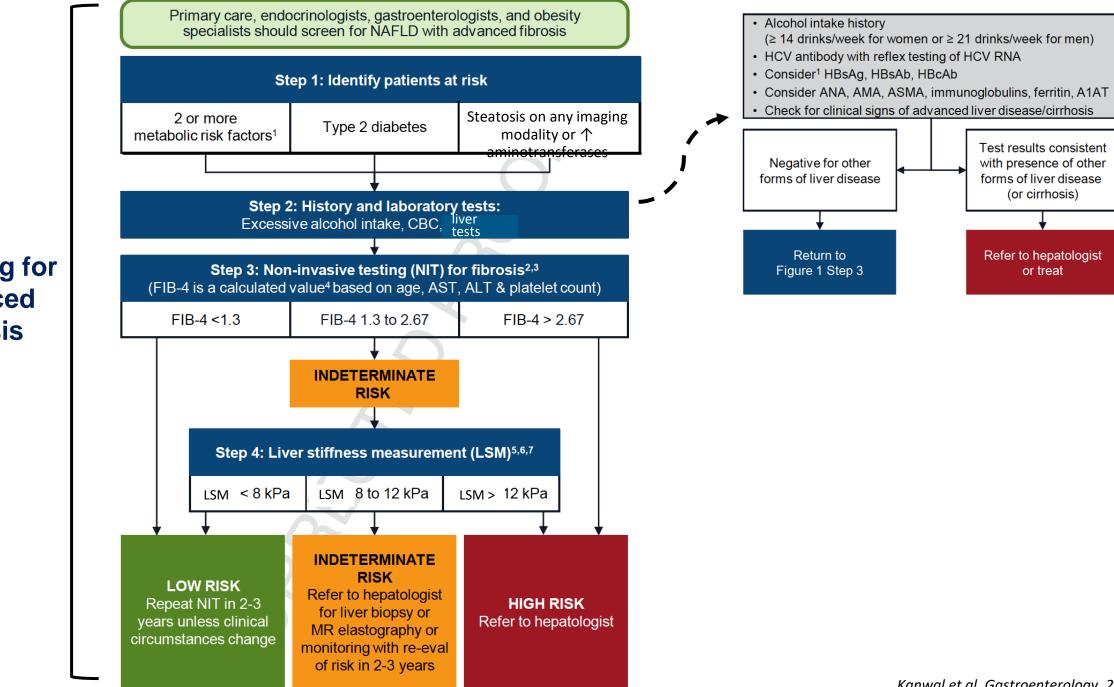
NASH & NAFLD: Emerging Non-Invasive Diagnostic Algorithms

Christos S. Mantzoros, MD, DSc, PhD, h.c. mult. Professor, Harvard Medical School

Editor-in-chief, Metabolism, Clinical and Experimental

Clinical Algorithms Combining the Use of Several NITs Assist with Proper Identification and Referral of High-Risk Patients

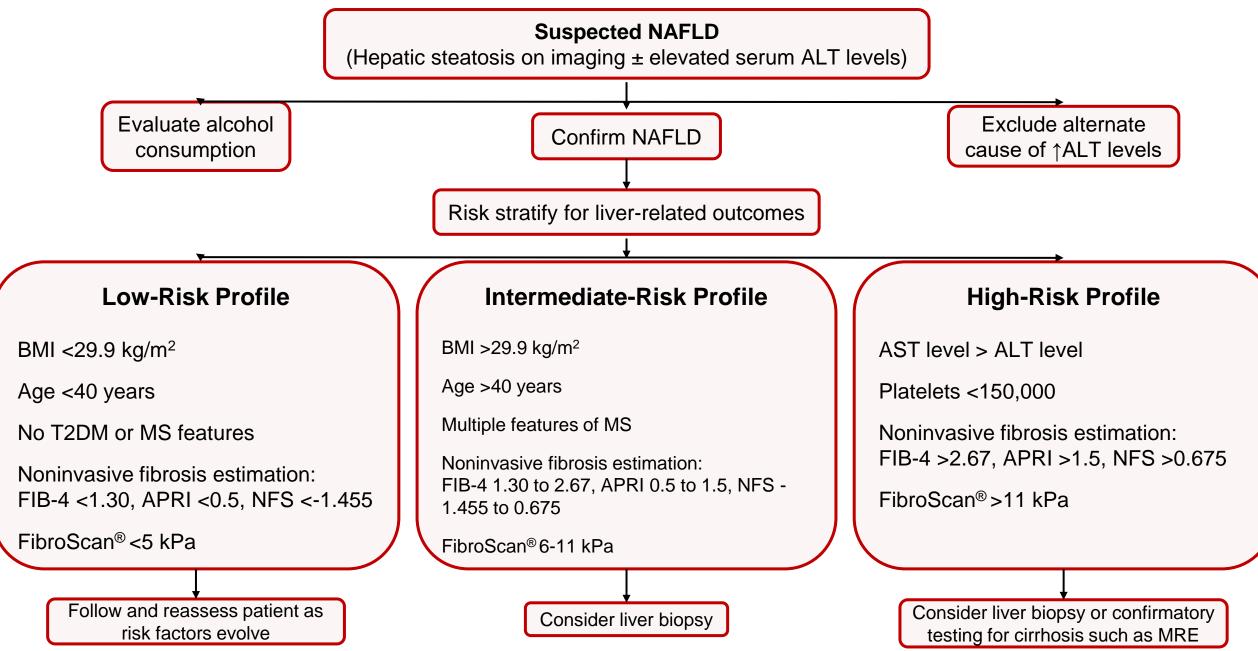



Patients With Suspected NAFLD

* Rule out other causes of liver disease (alcohol, HBV, HCV)

FIB-4 = Fibrosis-4 index; GP = general practitioner; HBV = hepatitis B virus; HCV = hepatitis C virus; LSM = liver stiffness measure; NAFLD = nonalcoholic fatty liver disease; NFS = NAFLD fibrosis score; NITs = noninvasive tests.

Adapted from Castera L et al. Gastroenterology, 2019.


Screening for Advanced Fibrosis

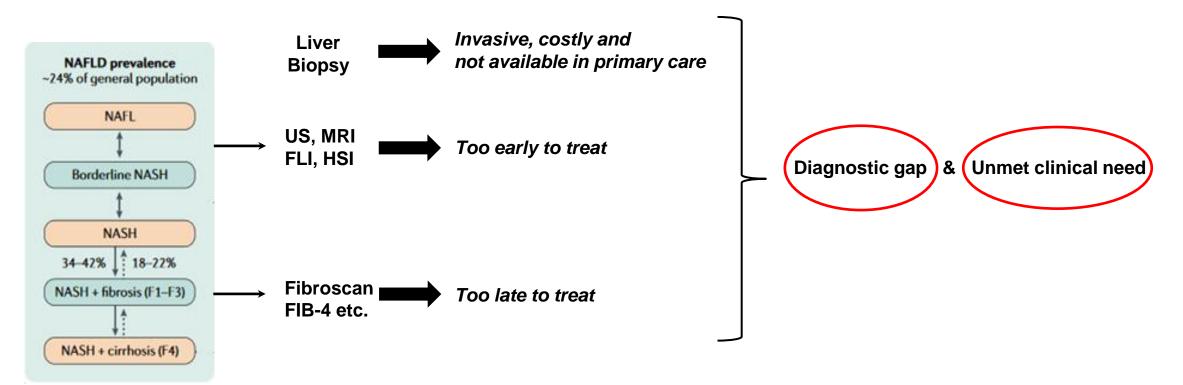
Clinical Care Pathway for the Risk Stratification and Management of Patients with NAFLD Kanwal F, Shubrook JH, Adams LA, Pfotenhauer K, Wong VWS, Wright E, Abdelmalek MF, Harrison SA, Loomba R, Mantzoros CS,

Bugianesi E, Eckel RH, Kaplan LM, El-Serag HB and Cusi K.

	LOW RISK FIB-4 < 1.3 or LSM < 8 kPa or liver biopsy F0-F1	INDETERMINATE RISK FIB-4 1.3 - 2.67 and/or LSM 8 - 12 kPa and liver biopsy not available	HIGH RISK ¹ FIB-4 > 2.67 or LSM > 12 kPa or liver biopsy F2-F4	
7	Management by PCP, dietician, endocrinologist, cardiologist, others	Management by hepatologist with multidisciplinary team (PCP, dietician, endocrinologist, cardiologist, others)		
Lifestyle intervention ²	Yes	Yes	Yes	
Weight loss recommended if overweight or obese ³	Yes May benefit from structured weight loss programs, anti-obesity medications, bariatric surgery	Yes Greater need for structured weight loss programs, anti-obesity medications, bariatric surgery	Yes Strong need for structured weight loss programs, anti-obesity medications, bariatric surgery	
Pharmacotherapy for NASH	Not recommended	Yes ^{4, 5}	Yes ^{4, 5}	
CVD risk reduction ⁶	Yes	Yes	Yes	
Diabetes care	Standard of care	Prefer medications with efficacy in NASH (pioglitazone, GLP-1 RA)	Prefer medications with efficacy in NASH (pioglitazone, GLP-1 RA)	

NASH Risk Assessment Algorithm

Rinella ME et al. Nat Rev Gastroenterol Hepatol, 2016.


Liver Biopsy

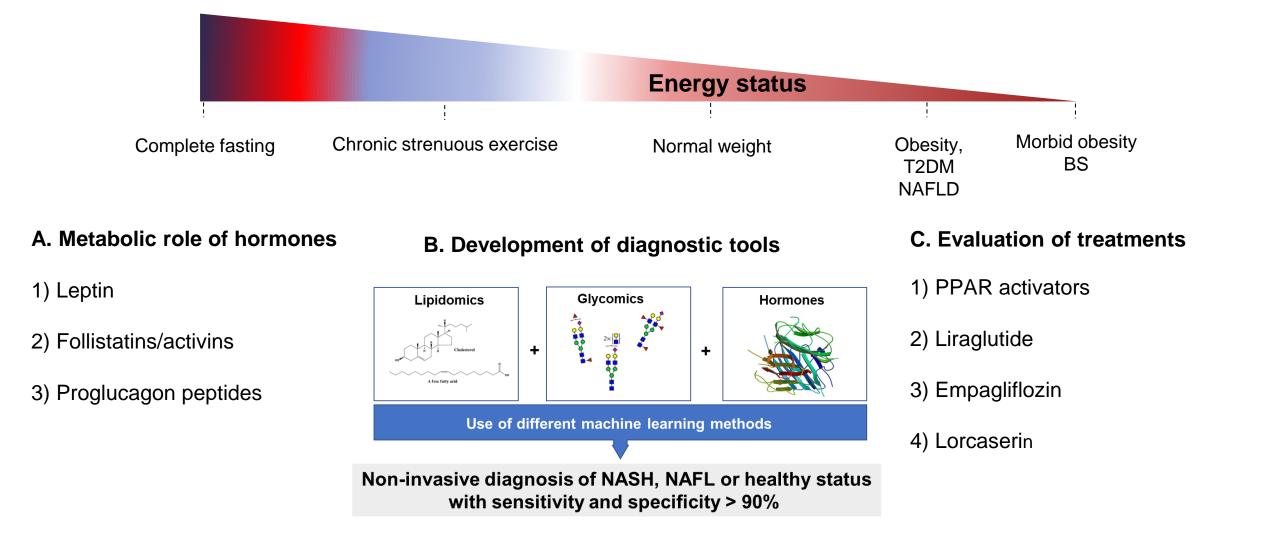
- The only one to differentiate between NAFLD and NASH
- > Apart from fibrosis stage, it can also define disease activity in the form of lobular and portal
- **Pros** inflammation and ballooning degeneration, using the NAFLD activity score (NAS) or the Steatosis Activity & Fibrosis score (SAF)
 - > Today it is used when there is diagnostic doubt and in clinical trials.

- Costly
- **Cons** > Invasive, associated with discomfort and occasional severe morbidity and even death
 - > Not available in primary care
 - Limited by sampling and intra- and inter- observer variability

Seeff LB et al. Clin Gastroenterol Hepatol, 2010. Ratziu V et al. Gastroenterology, 2005. Younossi ZM et al. Mod Pathol, 1998.

NAFLD – Development of Novel Non-Invasive Diagnostic Algorithms

Non-invasive diagnosis of NASH, NAFL or healthy status



Prof. Karniadakis Prof.

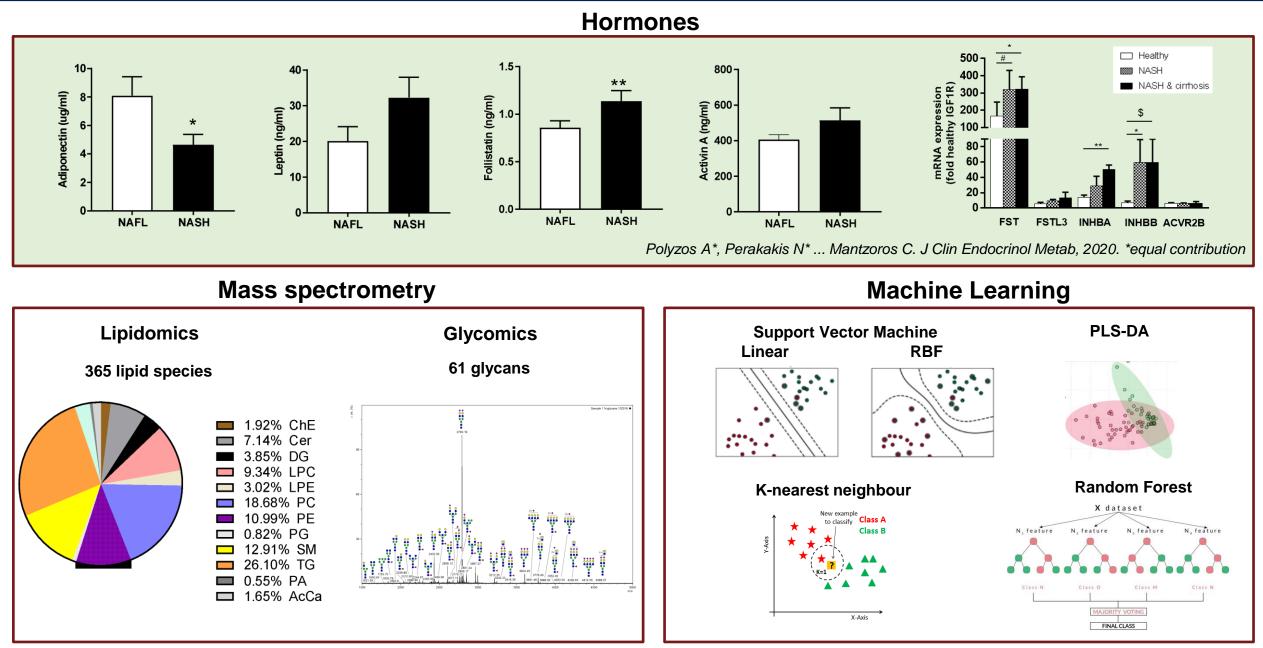
BROWN

Perakakis N et al. Metabolism, 2019.

*submitted patent application (by BIDMC)

A1) Chrysafi P, Perakakis N ... Mantzoros C. Nature Commun, 2020.
A2) Perakakis N ... Mantzoros C. Diabetes Metab Res Rev, 2020; J Clin Endocrinol Metab, 2018 Perakakis N, Kokkinos A ... Mantzoros C. Diabetes Obes Metab, 2019. Perakakis N, Upadhyay J ... Mantzoros C. Metabolism, 2018.

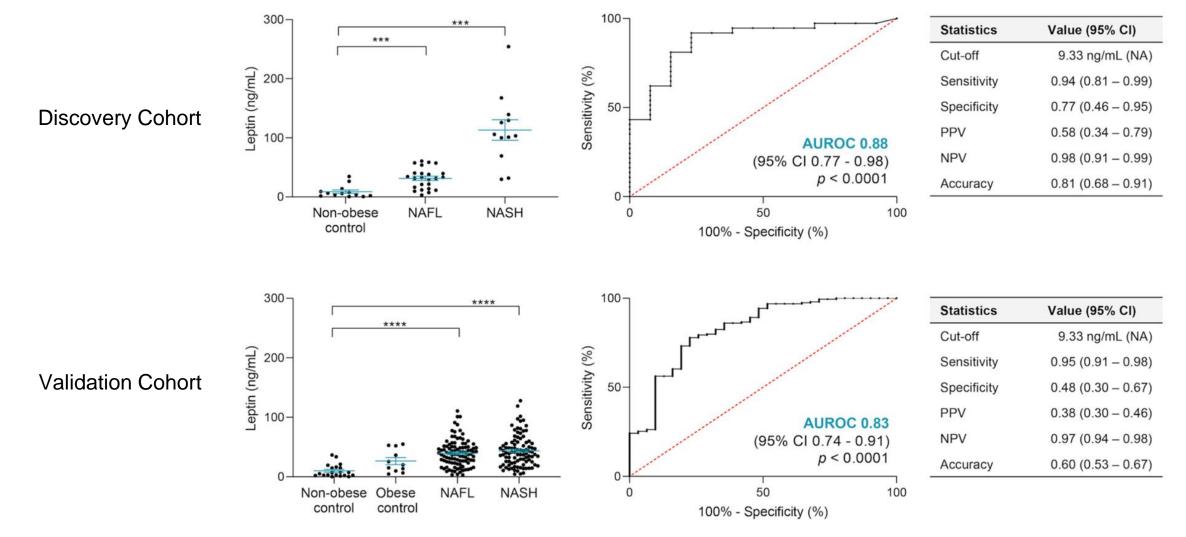
A3) Perakakis N, Kokkinos A ... Mantzoros C. Metabolism, 2019.


B) Perakakis N, Polyzos S, Yazdani A ... Mantzoros C. Metabolism, 2019. Polyzos S, Perakakis N ... Mantzoros C. J Clin Endocrinol Metab, 2020.

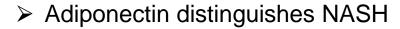
C) Perakakis N, Stefanakis K ... Mantzoros C. Hepatol Commun, 2020.

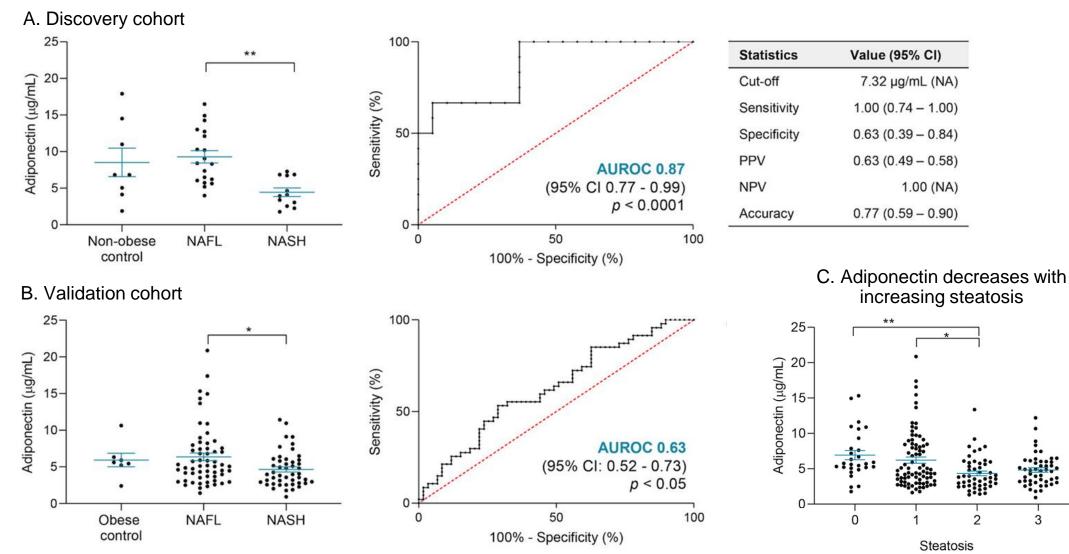
Peradze N ... Mantzoros C. Cardiovascular Diabetol, 2019.

Tuccinardi D ... Mantzoros C. Diabetes Obes Metab, 2019.


NAFLD – Development of Novel Non-Invasive Diagnostic Algorithms

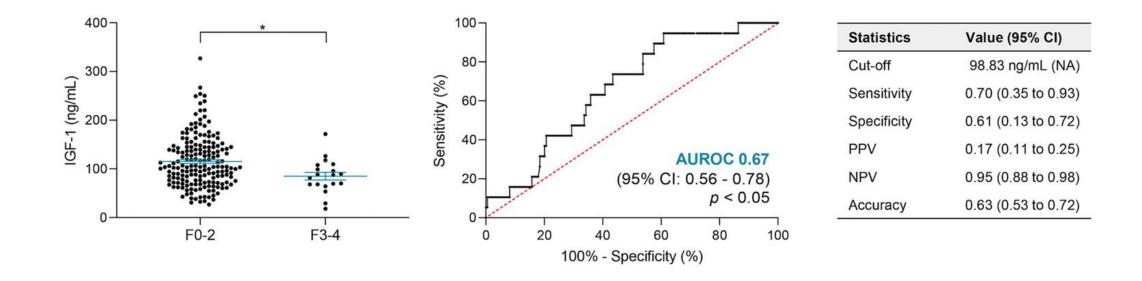
Perakakis N ... Mantzoros C. Metabolism, 2019 (BIDMC submitted patent application).


Adiponectin, Leptin and IGF-1 are Useful Diagnostic and Stratification Biomarkers of NAFL

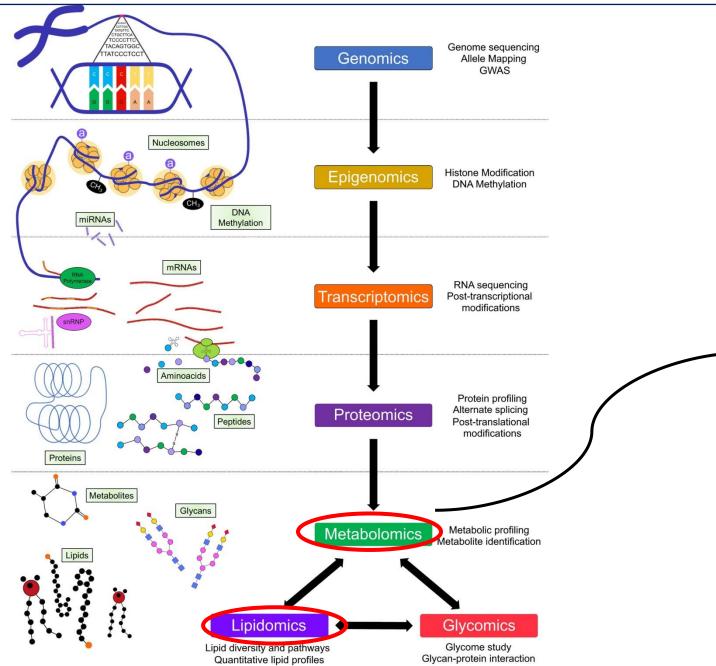

Leptin predicts NAFLD and correlates with serum content

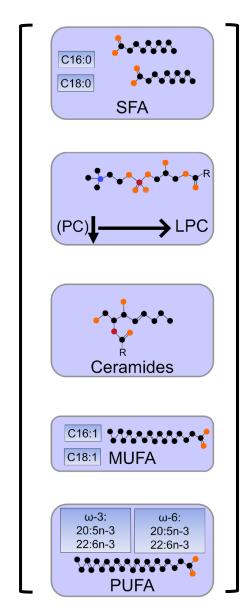
Margues V et al. Front Med, 2021.

Adiponectin, Leptin and IGF-1 are Useful Diagnostic and Stratification **Biomarkers of NAFL**


Marques V et al. Front Med, 2021.

3


2


Adiponectin, Leptin and IGF-1 are Useful Diagnostic and Stratification Biomarkers of NAFL

- No significant differences in IGF-1 relating to liver steatosis, lobular inflammation, or hepatocyte ballooning severity
- ➤ IGF-1 was significantly lower in NAFLD patients with advanced fibrosis (F3-4; p < 0.05)</p>

OMICS and AI /ML Technologies in NAFLD

Modulation through existing metabolic drugs (for T2DM, obesity etc.)

Perakakis N ... Mantzoros C. Metabolism, 2020.

51 year-old-man at your office. After identifying your patient's NAFLD Risk Factors and Past Medical History

How would you proceed with the diagnosis?

Which of the following is correct?

- A. The degree of elevation of liver enzymes does not correlate with the severity of the disease and in many cases ALT and AST can be normal abathstages! (staged: (igdlbdbsgs) ibrosis).
- B. Liver fibrosis has been linked to morbidity and reduced overall patient patientaburvival
- **C. NAFLD and fibrosis are reversible with weight loss**
- D. To differentiate alcoholic vs nonalcoholic fatty liver, the AST/ALT can be used which is ≥ 2 in alcohol induced fatty liver.
- E. All of the above.

What should be the next step after a FIB-4 or NFS calculation of intermediate risk?

A.Repeat it in 2-3 years
B.Repeat it in 1 year
C.Vibration-controlled transient elastography or blood tests measuring fibrosis markers
D.Refer to a gastroenterologist or hepatologist

Which of the following could most probably differentiate between NAFLD and NASH?

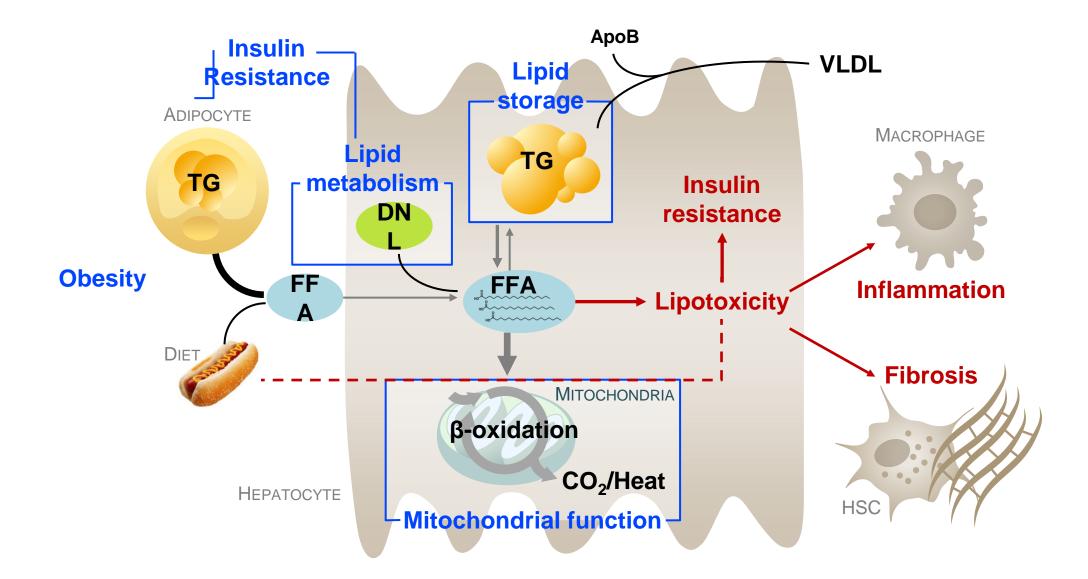
A. Ultrasonography B. MRI C. Vibration-controlled transient elastography D. Biopsy

Thank you!

CMHC Cardiometabolic Health Congress

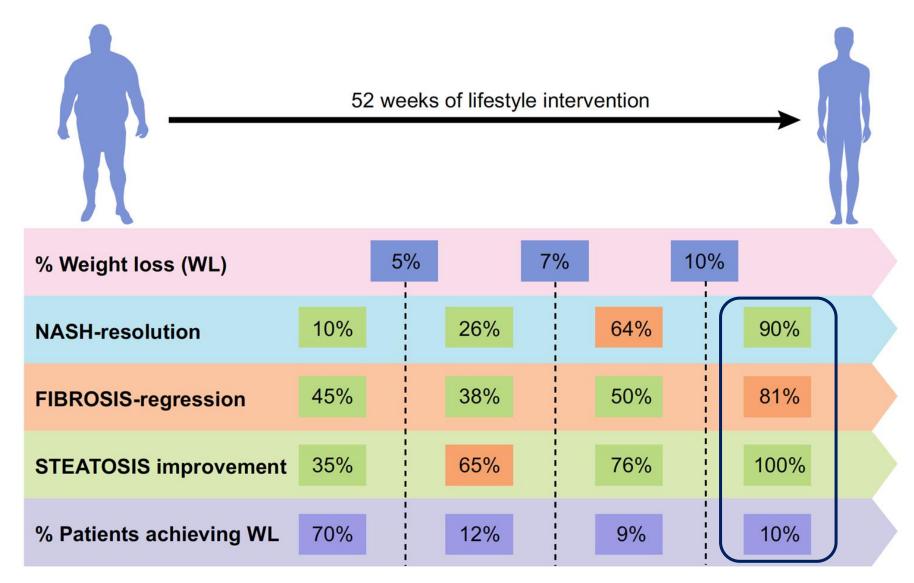
www.cardiometabolichealth.org

Foundations of Cardiometabolic Health Certification Course

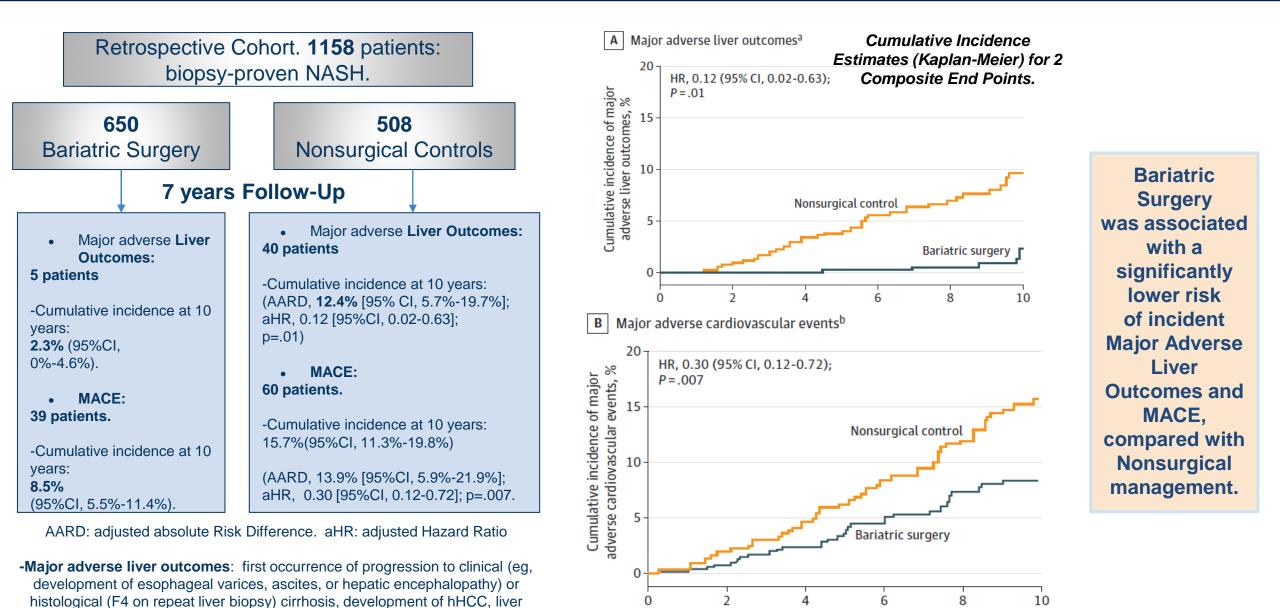

Certified Cardiometabolic Health Professional (CCHP)

Management of NASH: Lifestyle Modifications

Christos S. Mantzoros, MD, DSc, PhD, h.c. mult. Professor, Harvard Medical School


Editor-in-chief, Metabolism, Clinical and Experimental

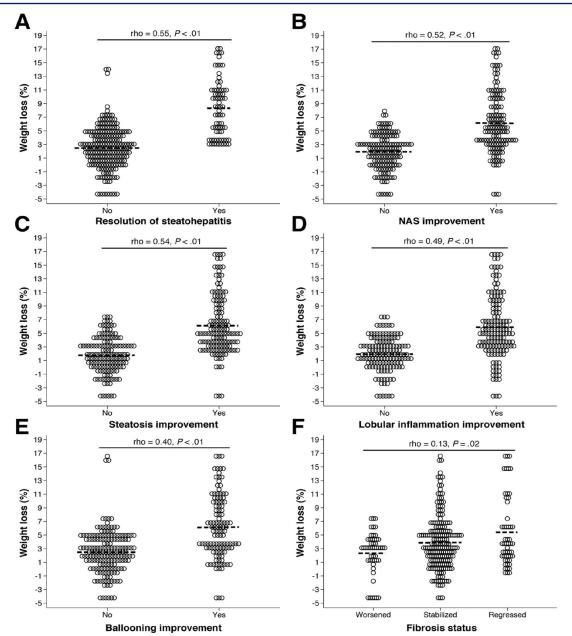
Proposed Pathophysiologic Mechanisms for NAFLD/NASH



ApoB = apolipoprotein B; DNL = de novo lipogenesis; FFA = free fatty acid; VLDL = very low density lipoprotein.

1. Browering D et al. J Clin Invest, 2004. 2. Spound Michael (Calvaloure) a Bolie Rean comman MAcourte Arterioscler Thromb Vasc Biol, 2012. 4. Sanders FW and Reine 2016 in Deuschwander-Tetri et al Hepatol, 2010. 6. Peverill W et al. In J Mol Sci, 2014. > Weight loss through moderate exercise and dietary changes

Is there an Association between Bariatric Surgery and long-term Major Adverse Liver / Cardiovascular Events in NASH and Obesity?



Time since index date, v

transplantation, or liver-related mortality after the index date

Weight Loss Through Lifestyle Modifications Significantly Reduces Features of Nonalcoholic Steatohepatitis

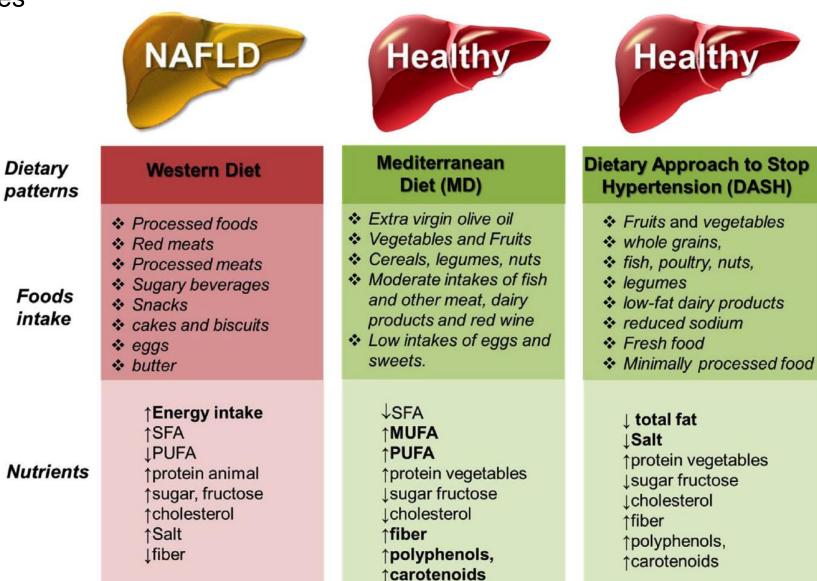
293 patients with histologically proven NASH

Lifestyle changes for 52 weeks

Liver biopsies collected and compared to baseline

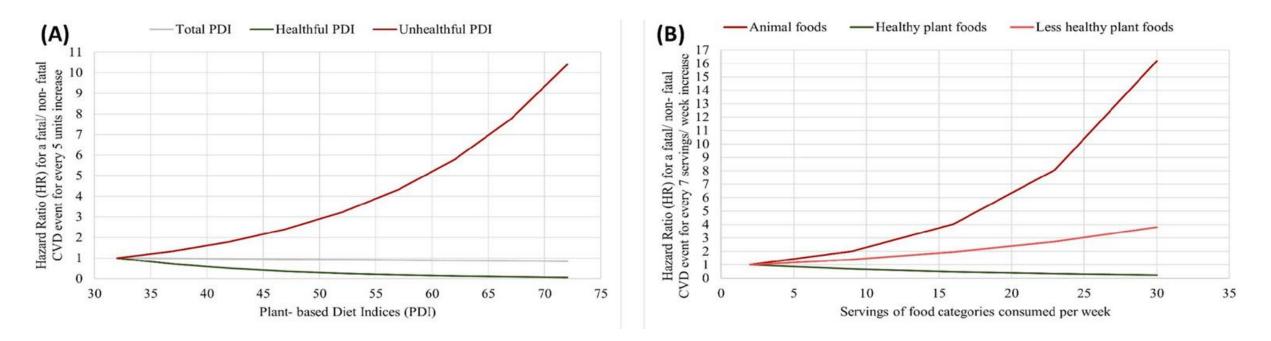
The magnitude of weight loss correlated with decreases in intrahepatic triglyceride (IHTG) content, hepatocyte ballooning, and hepatic inflammation.

Vilar-Gomez E et al. Gastroenterology, 2015.


Mediterranean diet is inversely associated with liver steatosis and decreases ten-year cardiovascular risk and diabetes in NAFLD: evidence from the ATTICA prospective cohort study

Total sample			
	Total sample	Men	Women
N, cases	2,020/317	1,006/198	1,014/119
Liver steatosis (yes vs. no)	HR (95%CI)	HR (95%CI)	HR (95%CI)
Crude model	3•01 (2•28, 3•95)*	2•70 (1•84, 3•95)*	2•83 (1•86, 4•30)*
Multi-adjusted model	1•37 (1•10, 2•10)**	1•61 (1•01, 2•57)*	1•11 (0•66, 1•88)
Multi-adjusted model plus MedDietScore	1•36 (0•96, 1•94)	1•62 (1•01, 2•63)**	1•08 (0•63, 1•85)
Sample stratified according to level of adherence to Mediterran	ean diet		
	Total sample	Men	Women
MedDietScore<27	_		
N, cases	1,223/280	854/188	369/92
Liver steatosis (yes vs. no)	HR (95%CI)	HR (95%CI)	HR (95%CI)
Crude model	1•92 (1•41, 2•62)*	2•30 (1•54, 3•42)*	1•49 (0•89, 2•50)
Multi-adjusted model	1•40 (1•01, 2•03)**	1•65 (1•02, 2•69)**	1•09 (0•60, 1•98)
MedDietScore≥27			
N, cases	797/37	152/10	645/27
Liver steatosis (yes vs. no)	HR (95%CI)	HR (95%CI)	HR (95%CI)
Crude model	2•05 (0•94, 4•50)	3•11 (0•66, 4•55)	1•72 (0•66, 4•48)
Multi-adjusted model	1•00 (0•38, 2•63)	1•26 (0•20, 5•64)	0•83 (0•24, 2•84)

HRs and their corresponding CIs were obtained through Cox regression analysis. Multi-adjusted model was adjusted for age, (gender), hypertension, hypercholesterolemia, current smoking, physical activity, body mass index, family history of cardiovascular disease. Abbreviations: Confidence Interval (CI); Hazard ratio (HR); Triglycerides-glucose (TyG). p<0-001, **p<0-05.


Management of NASH: Lifestyle Modification

Dietary changes

Quality of Plant-Based Diets in Relation to Cardiovascular Disease Risk in a Mediterranean Population: the ATTICA Cohort Study

> Dose-response relationship of plant-based diet indices, animal and plant foods with ten-year CVD incidence

The association with overall plant-based diet (PDI) was quite null.

A clear protective tend was evident increasing healthful plant-based dietary index (hPDI).

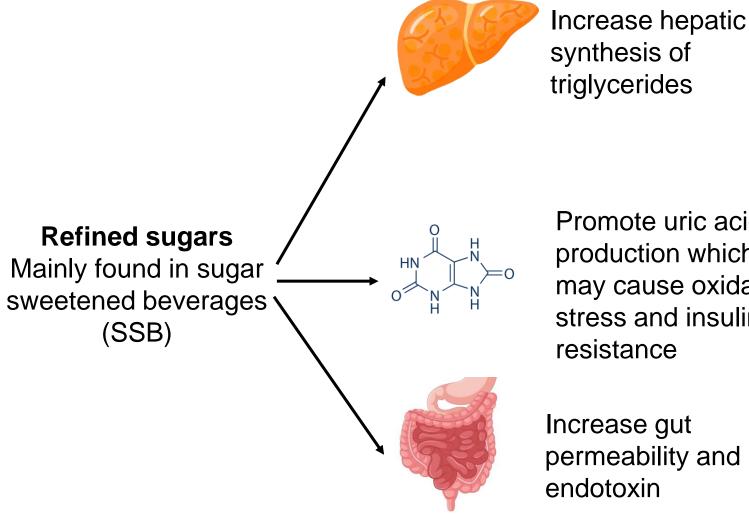
An aggravating effect of unhealthful plant-based dietary index (uPDI) was observed.

Kouvari M...Mantzoros C and the ATTICA study Investigators. Clin Nutr, 2021.

Food Items to Avoid

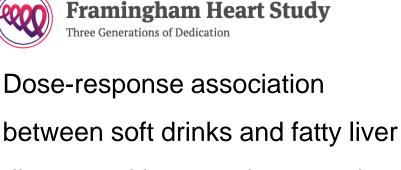
Fruit juiceCanned fruit

- Refreshments Cola type
- > Other sugar refreshments
- Light refreshments



- Potatoes fried
- Potatoes boiled
- Potatoes baked
- Mashed potatoes

- Bread
- ➤ Rusks,
- French toast
- ➤ Cereals
- Pasta
- ➤ Rice



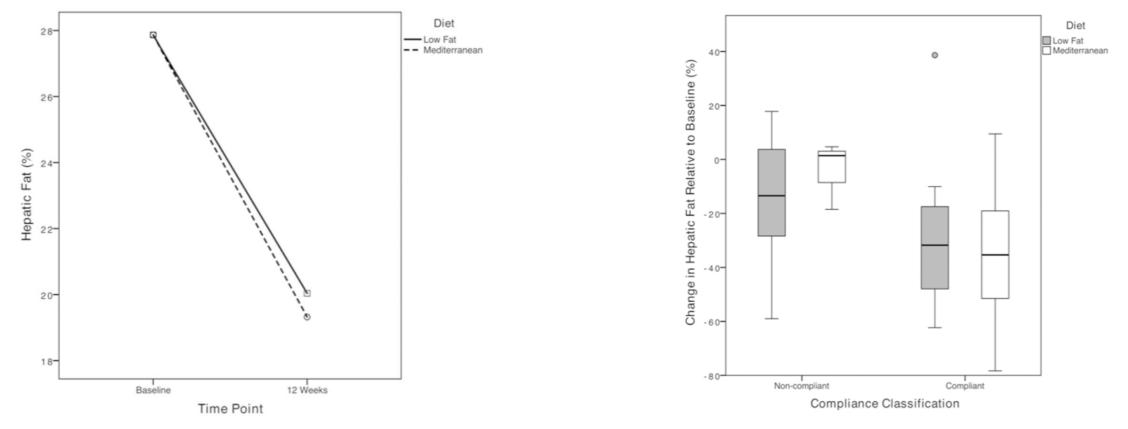
- ➤ Honey/jam
- ➤ Sugar
- ➤ Candies
- Chocolate
- ➤ Ice cream
- ➤ Cereal
- Cookies/biscuits
- ➤ Cake
- Greek traditional sweets

Promote uric acid production which may cause oxidative stress and insulin resistance

Increase gut permeability and endotoxin

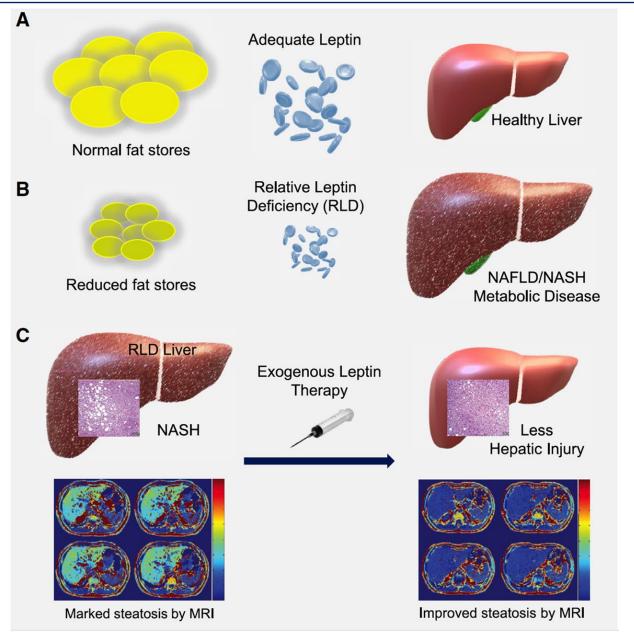
disease, with a 61% increased

risk of fatty liver disease in daily


consumers of SSB compared to

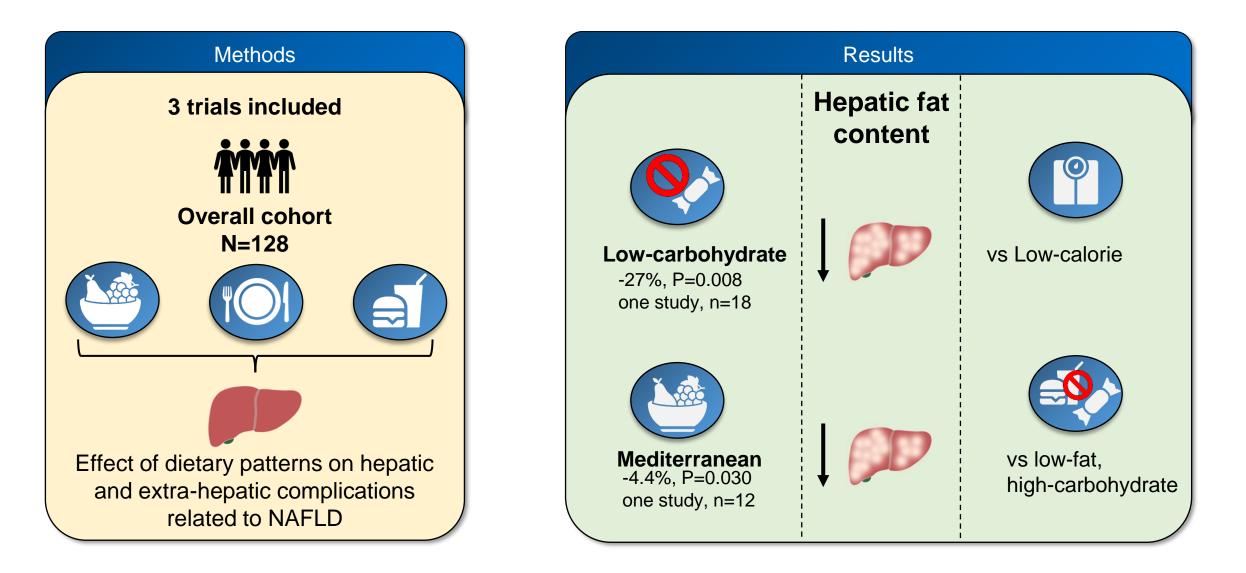
non-consumers.

1) Howard BV et al. Circulation, 2002. 2) Poulsom R et al. Prog Biochem Pharmacol, 1986. 3) Herman RH et al. Fed Proc, 1970. 4) Vos MB et al. Hepatology, 2013. 5) Choi JW et al. Arthritis Rheum, 2008. 6) Afzali A et al. Hepatology, 2010. 7) Ma J et al. J Hepatol, 2015.


Ad Libitum Mediterranean and Low-Fat Diets Both Significantly Reduce Hepatic Steatosis: A Randomized Controlled Trial

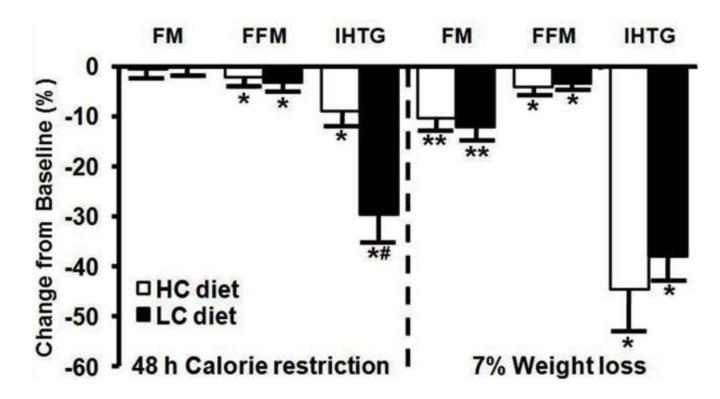
- At week 12, hepatic steatosis had reduced significantly in both groups (P < 0.01), and there was no difference in liver fat reduction between ad libitum isocaloric Mediterranean vs Low-Fat Diet (P = 0.32)</p>
- The Mediterranean diet was easier to adhere to than a low-fat diet (88% vs. 64%) and improved CVD risk factors, including lipids and glycated haemoglobin, to a greater degree.

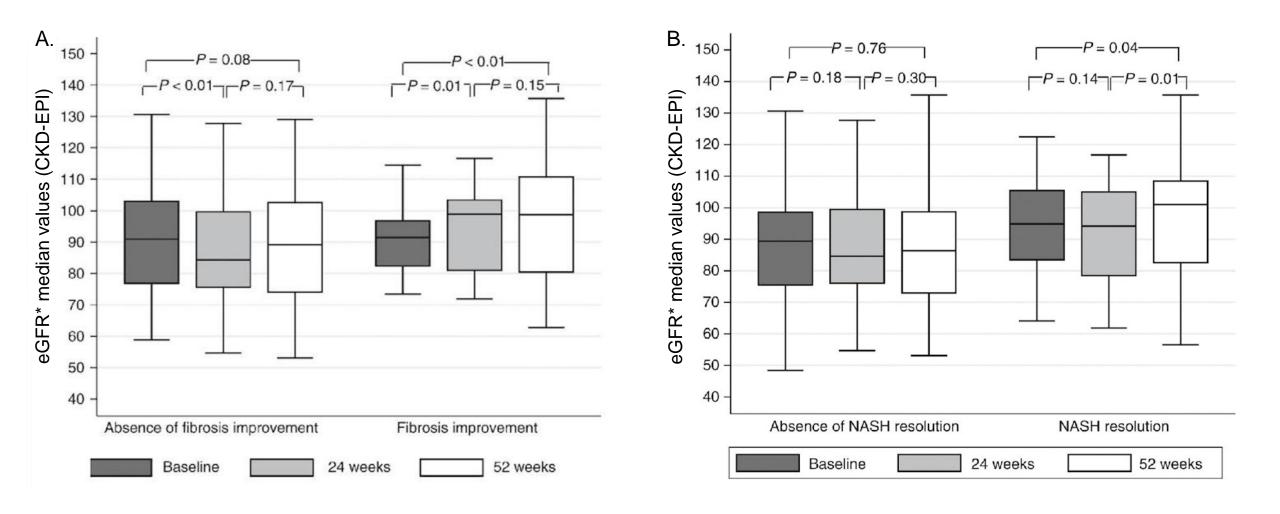
Properzi C et al. Hepatology, 2018.


Metreleptin Therapy for NASH: Open Label Interventions in Two Different Clinical Settings

Akinci B et al. Med, 2021.

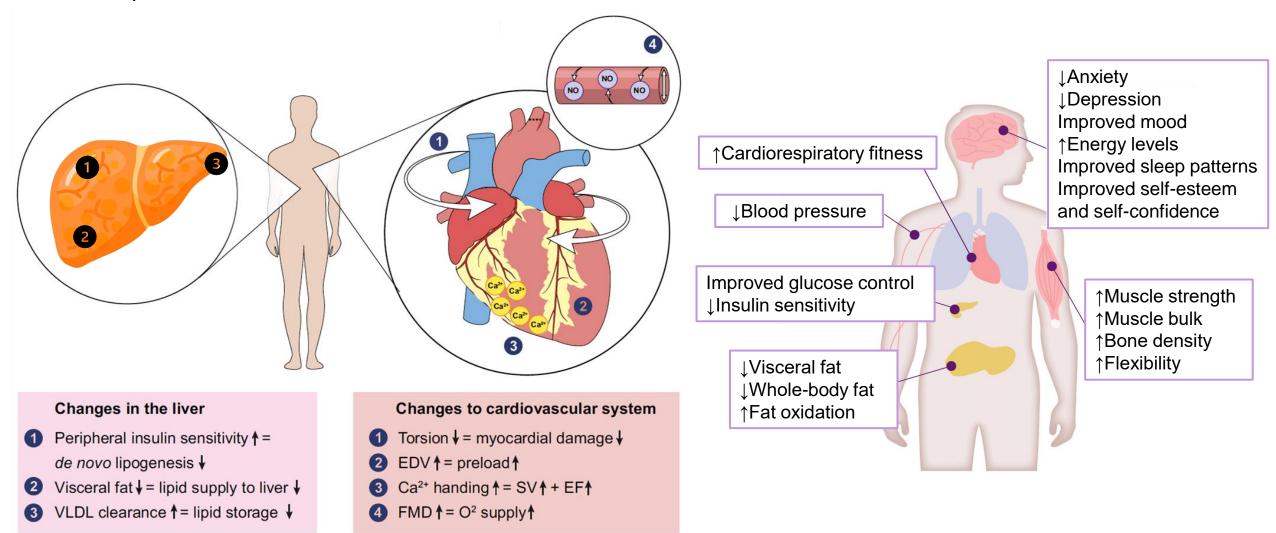
The Effect of Dietary Patterns on NAFLD and its Related Hepatic and Extra-Hepatic Complications in Adults: a Systematic Review of Randomized Controlled Trials


Angeliki M. Angelidi, *Angeliki Papadaki, * Eric Nolen-Doerr, Chrysoula Boutari, & Christos S. Mantzoros (under Review)

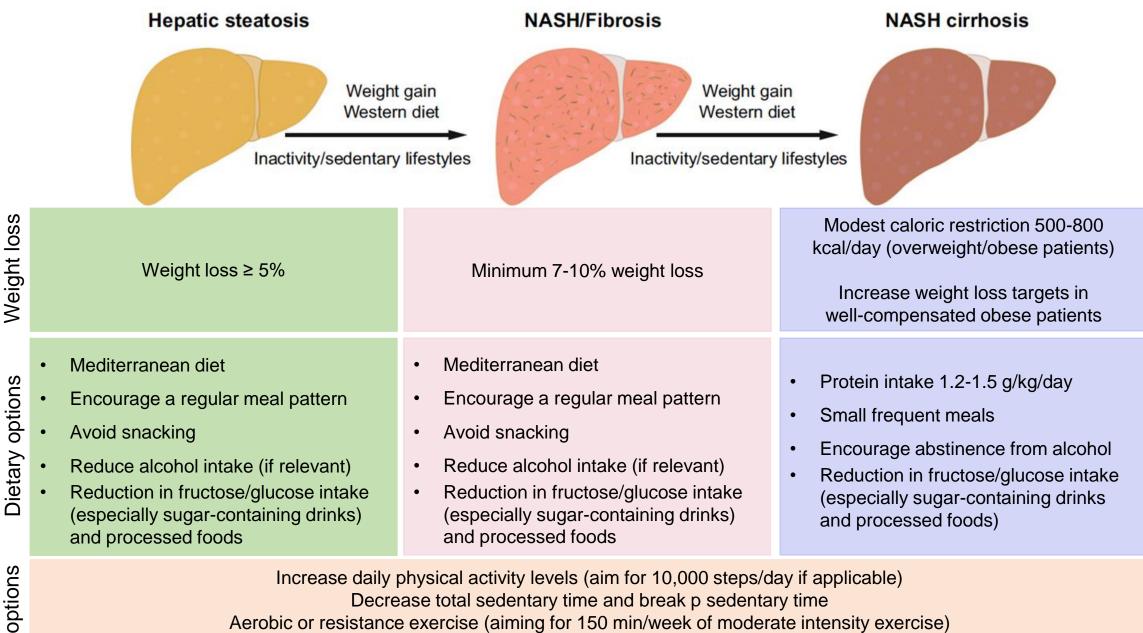

Intrahepatic Triglyceride Content (IHTG) is extremely sensitive to changes in energy balance

 22 obese subjects (BMI=36.5±0.8kg/m²) were randomized to a high-carbohydrate (>180g/d) or low-carbohydrate (<60g/d) energy-deficit diet and were assessed after 48 h, and after ~11 wks (7% weight loss) of diet therapy.

Even 48 h of a low-calorie diet can decrease IHTG by about 20%, and 7% weight reduction decreases IHTG by approximately 40%.



Improvement in liver histology due to lifestyle modification is independently associated with improved kidney function in patients with non-alcoholic steatohepatitis


Benefits of Physical Activity and Exercise in NAFLD

Regular endurance or resistance exercise in the absence of weight loss decreases IHTG content only slightly but improves metabolic health.

1) Hashida R et al. J Hepatol, 2017. 2) Sabag A et al. Diabetes Care, 2020. 3) Hallsworth K et al. Gut, 2011. 4) Romero-Gomez M et al. J Hepatol, 2017. 5) Hallsworth K et al. JHEP Rep, 2019.

Summary of Lifestyle Treatment Options Through the Course of NAFLD

Decrease total sedentary time and break p sedentary time

Exercise

Aerobic or resistance exercise (aiming for 150 min/week of moderate intensity exercise)

Hallsworth K et al. JHEP Rep, 2019

The Role of the Multidisciplinary Approach and Behavioral Therapy in the lifestyle Treatment of NASH

Multidisciplinary team

- > Physicians, dieticians, psychologists and physical activity supervisors
- Not provided in most clinical setups due to limited resources

- Address a patient's lack of understanding and comprehension of diagnosis
- Provide information and refer the patients to appropriate resources about NAFLD implications and treatment
- > Obtain training in behavioral therapy.

Behavioral Therapy and Motivational Interviewing

- ≻ Ask
- Advise
- ➤ Assess
- Assist
- > Arrange

Barriers and Facilitators to Implementing Lifestyle Changes

Genetic Predisposition: The PNPLA3 rs738409 gene polymorphism: associated with a 3-fold greater reduction in hepatic triglyceride in response to lifestyle intervention.

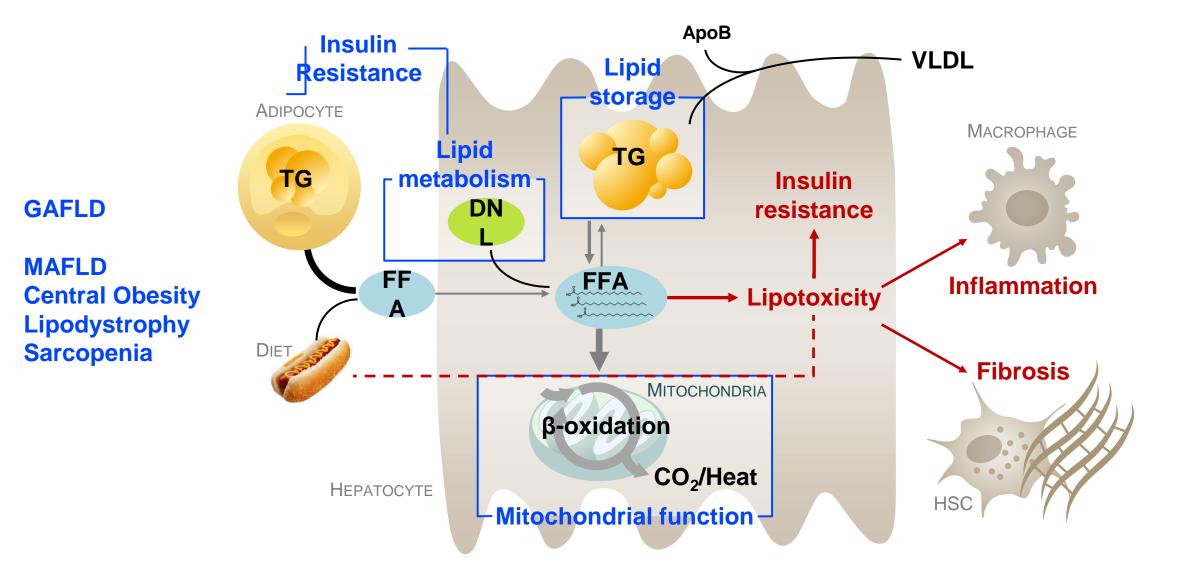
Baseline BMI: 3–5% body weight reduction sufficient for NAFLD resolution in 50% of non-obese individuals, compared to the 7–10% body weight reduction required to achieve a similar outcome in obese individuals.

NASH Resolution ➤ Number of metabolic components and duration: Less likely if individuals are morbidly obese (BMI ≥35 kg/m2), have type 2 diabetes (T2DM) or severe NASH demonstrated by significant hepatocyte ballooning

- Long-term weight loss maintenance
- Neurohormonal defense mechanisms: The key factors influencing long-term weight loss are intensity of physical activity and percentage of weight loss during the first year.

Romero-Gomez M et al. J Hepatol, 2017. Hallsworth K et al. JHEP Rep, 2019.

www.cardiometabolichealth.org


Foundations of Cardiometabolic Health Certification Course

Certified Cardiometabolic Health Professional (CCHP) Management of NASH: Overview of Guidelines, Current and Select Emerging Treatment Options

Christos S. Mantzoros, MD, DSc, PhD, h.c. mult. Professor, Harvard Medical School

Editor-in-chief, Metabolism, Clinical and Experimental

Proposed Pathophysiologic Mechanisms for NAFLD/NASH

ApoB = apolipoprotein B; DNL = de novo lipogenesis; FFA = free fatty acid; VLDL = very low density lipoprotein.

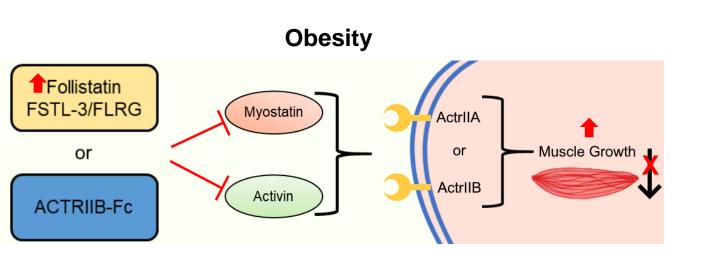
1. Browning JD et al. J Clin Invest, 2004. 2. Samuel VT et al. J Clin Invest, 2016. 3. Ramos-Roman MA et al. Arterioscler Thromb Vasc Biol, 2012. 4. Sanders FW et al. Biol Rev, 2016. 5. Neuschwander-Tetri et al. Hepatol, 2010. 6. Peverill W et al. In J Mol Sci, 2014.

Activins/Follistatins in Response to Exercise and their Associations with Metabolic and Anthropometric Variables

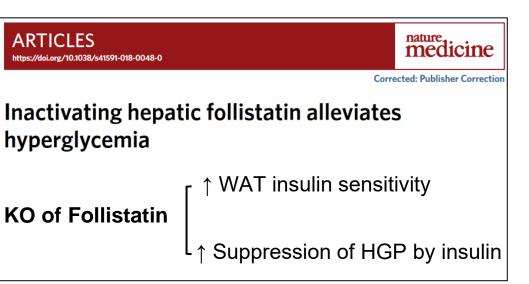
Exercise

1. Intervention study in healthy normal weight population (n=80)

- n=20/group [young or old], [fit vs sedentary]
- Aerobic exercise up to exhaustion


2. Intervention study in patients with metabolic syndrome (n=9) vs. without (n=13)

- High-intensity, Moderate-Intensity, Resistance Exercise
- Metabolic parameters in both studies



 A. ↑ 10-21% during exercise independent of type of exercise and MetS

B. Follistatin and FSTL3 correlate with BMI, %body fat and lipid profile

Perakakis et al. J Clin Endocrinol Metab, 2018.

Tao et al. Nat Med, 2018.

Activins / Follistatins

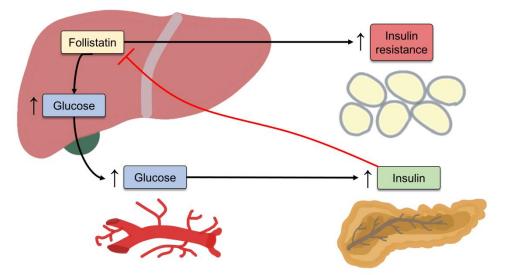
Activin A, Activin B, Activin AB

> Follistatin & Follistatin-like 3

growth Antagonize Activins

A. Activate Reproductive function

Clinical studies with activins/follistatins


- 1. Glucose or lipid intake p.o. or i.v. for 6 hours (Cross-sectional intervention)
- 2. Before vs after bariatric surgery in morbid obesity
- 3. Exercise in patients with Metabolic Syndrome (Cross-sectional intervention)
- 4. Exercise in healthy population (Intervention)
- 5. Complete fasting for three days vs isocaloric state (Cross-sectional)
- 6. Athletes with hypothalamic amenorrhea vs eumenorrheic women (Case-Control)

Perakakis...Mantzoros Diabetes Obes Metab. 03/2019 Perakakis...Mantzoros Diabetes Res Rev 02/2020

B. Inhibit muscle

Perakakis...Mantzoros J Clin Endocrinol Metab 08/2018

Perakakis...Mantzoros Metabolism 05/2018

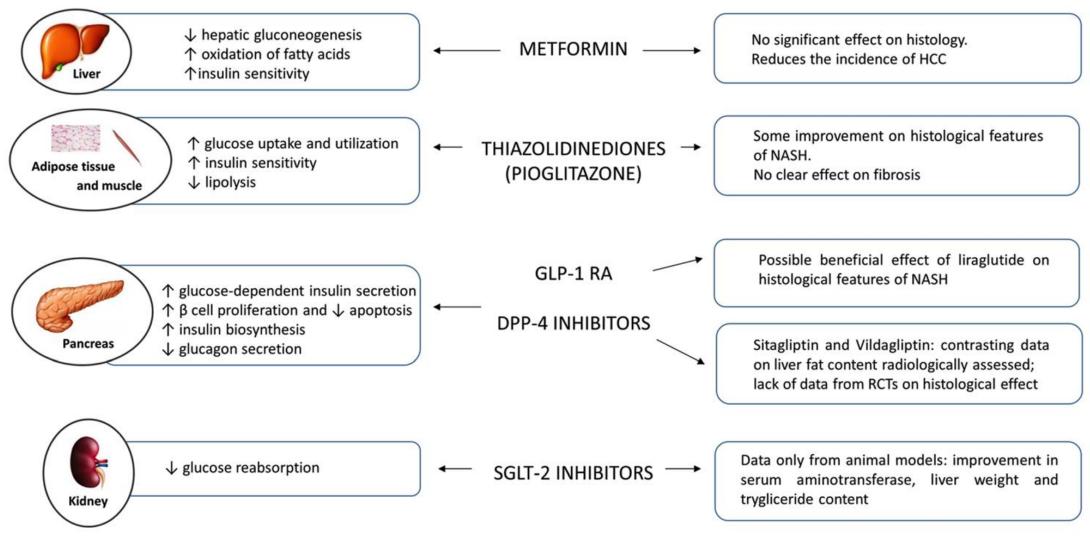
Early reduction in follistatin predicts long-term impovement in insulin sensitivity after bariatric surgery

Variable	Lifestyle intervention ^a	Liver-directed pharmacotherapy	Diabetes care (in individuals with diabetes)	Cardiovascular risk reduction	
NAFL	Yes	No	Standard of care	Yes	
NASH with fibrosis stage 0 or 1 (F0, F1)	Yes	No	Standard of care	Yes	
NASH with fibrosis stage 2 or 3 (F2, F3)	Yes	Yes	Pioglitazone, GLP-1 receptor agonists ^b	Yes	
NASH cirrhosis (F4)	Yes	Yes	Individualize ^c	Yes	

^a All patients require regular physical activity and healthy diet and to avoid excess alcohol intake; weight loss recommended.

^b Among GLP-1 receptor agonists, semaglutide has the best evidence of benefit in patients with NASH and fibrosis.

^c Evidence for efficacy of pharmacotherapy in patients with NASH cirrhosis is very limited and should be individualized and used with caution.



Management of NASH

Currently Available Pharmacotherapies – mechanisms of action

Effect on NASH

logna Prat L et al. Hormones (Athens), 2018.

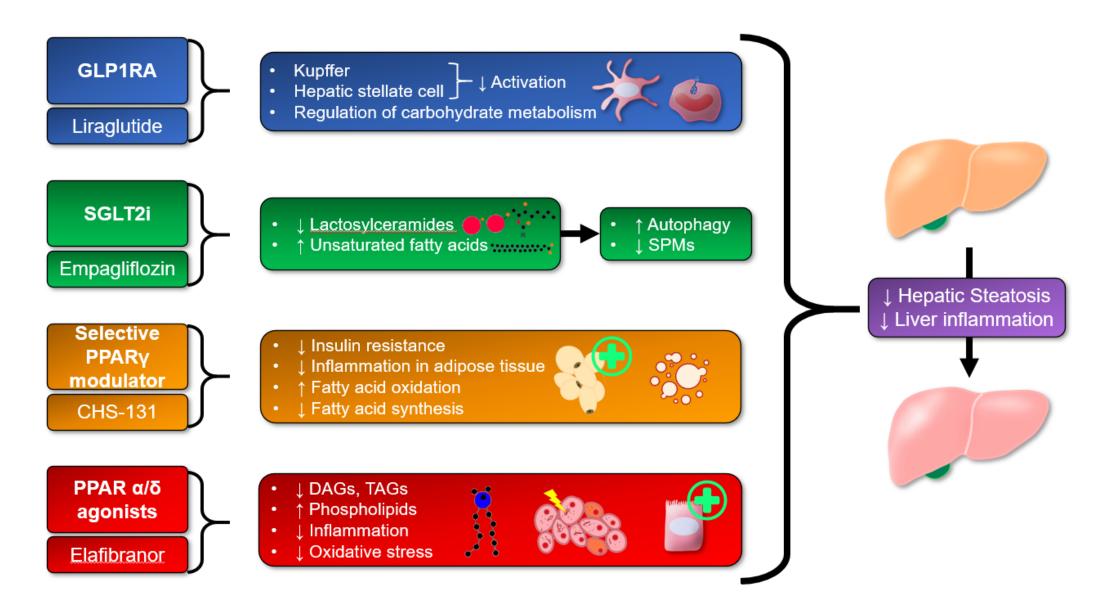
Clinical Care Pathway for the Risk Stratification and Management Of Patients with NAFLD

American Gastroenterologica Association

Kanwal F...Mantzoros C...Cusi K, Gastroenterology 2021 in press.

Delineating clinical care pathways for NAFLD/NASH patients, to be widely implemented in primary care practices

The AGA assembled a congress of experts to develop a white paper providing guidance on the screening, diagnosis, and treatment of NAFLD.


A second goal was to develop a clinical care pathway to be widely implemented in primary care practices.

This paper introduces the latter care pathway and provides a rationale supporting proposed steps to assist clinicians in diagnosing and managing clinically significant fibrosis based on the best available evidence.

Lifestyle Modification	While weight loss is associated with mild/moderate improvement in NASH, maintaining the weight loss is very challenging.
Weight Loss Surgery	Bariatric surgery and endoscopic devices have demonstrated improvement in NASH and metabolic syndrome, but evidence for fibrosis improvement is limited.
Commonly Prescribed Medications	 Vitamin E (RRR-a-tocopherol) administered at a daily dose of 800 IU/day improves liver histology in nondiabetic adults with biopsy-proven NASH and therefore may be considered for this patient population. Risks and benefits should be discussed with each patient before starting therapy Until further data supporting its effectiveness become available, vitamin E is not recommended to treat NASH in diabetic patients, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis

Chalasani N et al. Hepatol, 2018. Klein EA et al. JAMA, 2011. Miller ER 3rd et al. Ann Intern Med, 2005.

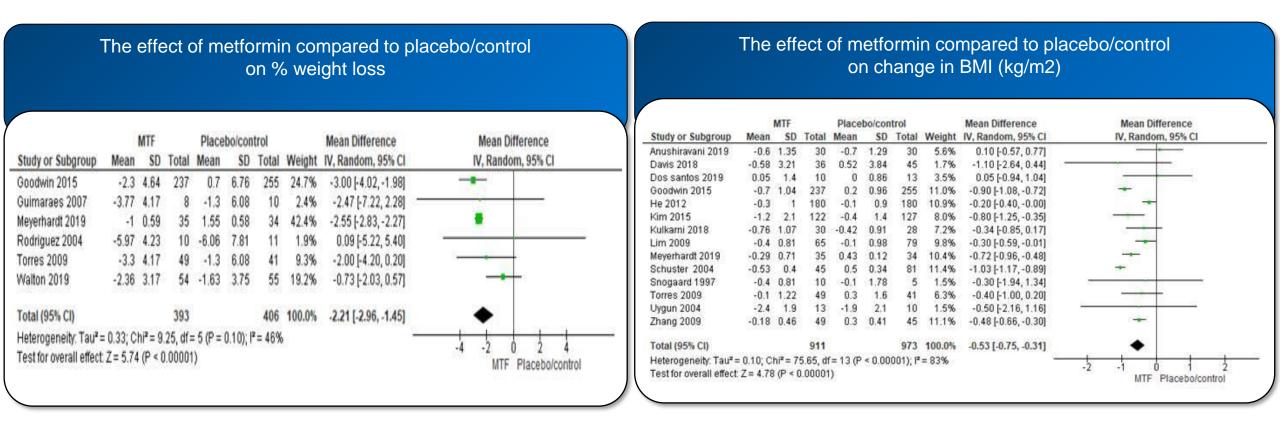
NAFLD– Evaluation of Treatments in Preclinical Models

1) Perakakis N ... Mantzoros C. Hepatol Commun, 2020 2) Perakakis N ... Mantzoros C. Liver Int, 2021 3) Nasiri-Ansari et al. Int J Mol Sci, 2021 4) Perakakis N ... Mantzoros C. Int J Mol Sci, 2021.

Medications Targeting Pathophysiological Processes

		LIVER	STEATOS	IS	STEATOH	EPATITIS	CIRRHOSIS		
	-		ets related to xicity & oxidative	inflam	ets related to nmation and ne activation	death	otosis and	fibro	ets related to genesis & gen turnover
PPARγ:	Pioglitazone	PPARα/ð:	Elafibranor	CCR2/5:	Cenicriviroc	ASK1	Selonsertib	LOXL2:	Simtuzumab
GLP-1:	Liraglutide, Semaglutide	PPARα/∂/γ:	Lanifibranor			AJRI			
GLP-1/GR:	MEDI0382			AOC3:	BI 1467335	Caspase	Emricasan	Galectin	GR-MD-02
ACC:	GS-0976, PF-05221304	PPARα/γ:	Saroglitazar	TLR4:	JKB-121	CRV431		CRV431	
SCD1:	Aramchol	MPC	MSDC-0602K, PXL065	Anti-LPS:	IMM-124E	CKV431			
SGLT1/2: FGF21:	LIK066 BMS-986036, AKR- 001,BI089-100	FXR:	OCA, GS-9674, tropifexor, LMB-763, EYP001, MET409	CRV431					
THR-β:	MGL-3196, VK2809	TGR5:	INT-767, INT-777						
FGFR1/KLB	BFKB8488A								
MPC	MSDC-0602K, PXL065	ASBT:	Volixibat						
Mixed ag-		FGF19:	NGM282						
antagonist GR	miricorilant	Vitamin E							
and antagonist MR	millioniant			Pł	nase II trials (pla	nned or c	ongoing): more th	nan 60	
GLP-1/GIP	Tirzepatide								

Phase III trials: Cenicrivoric, elafibranor, obeticholic acid, and selonsertib



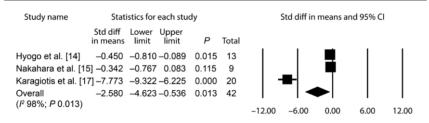
Metformin	 Metformin is not recommended for treating NASH in adult patients. 					
Statins & Thiazolidinediones	 Pioglitazone improves liver histology in patients with and without T2DM with biopsy-proven NASH. Therefore, it may be used to treat these patients. Risks and benefits should be discussed with each patient before starting therapy. Until further data support its safety and efficacy, pioglitazone should not be used to treat NAFLD in patients without T2DM and biopsy-proven NASH. 					
GLP-1 analogues & SGLT-2s	 It is premature to consider GLP-1 agonists or SGLT-2is to specifically treat liver disease in patients with NAFLD or NASH 					
 Vitamin E Vitamin E (RRR-a-tocopherol) administered at a daily dose of 800 IU/day improves liver histole nondiabetic adults with biopsy-proven NASH and therefore may be considered for this patient Risks and benefits should be discussed with each patient before starting therapy Until further data supporting its effectiveness become available, vitamin E is not recommended in diabetic patients, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis 						

The Effect of Metformin on Weight and other Metabolic Parameters in Obese Non-Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Zarzour F, Saadeh N, Haber R, Basha D, Jebali L, Ghezzawi M, Chakhtoura M, Mantzoros CS

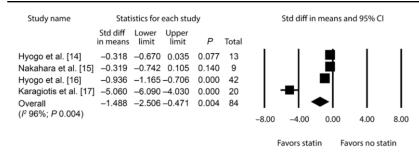
The Effect of Metformin on Weight and other Metabolic Parameters in Obese Non-Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Zarzour F, Saadeh N, Haber R, Basha D, Jebali L, Ghezzawi M, Chakhtoura M, Mantzoros CS

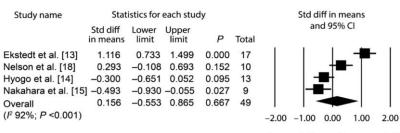

		MTF			bo/con			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.5.1 Treatment dur	ation < 1	year							
Anushiravani 2019		1.35	30	-0.7	1.29	30	5.6%	0.10 [-0.57, 0.77]	
Dos santos 2019		1.4	10	0	0.86	13	3.5%	0.05 [-0.94, 1.04]	
He 2012	-0.3	1	180	-0.1	0.9	180	10.9%	-0.20 [-0.40, -0.00]	
Kulkarni 2018	-0.76		30	-0.42	0.91	28	7.2%	-0.34 [-0.85, 0.17]	
Lim 2009	-0.4	0.81	65	-0.1	0.98	79	9.8%		
Neverhardt 2019	-0.29		35	0.43	0.12	34	10.4%		
Snogaard 1997	-0.4	0.81	10	-0.1	1.78	5	1.5%	-0.30 [-1.94, 1.34]	
Jygun 2004	-2.4	1.9	13	-1.9	2.1	10	1.5%	-0.50 [-2.16, 1.16]	
Subtotal (95% CI) Heterogeneity: Tau ² :			373			379	50.5%	-0.33 [-0.56, -0.11]	•
Test for overall effect									
Davis 2018	-0.58	3.21	36	0.52	3.84	45	1.7%	-1.10 [-2.64, 0.44]	
Goodwin 2015	-0.7	1.04	237	0.2	0.96	255	11.0%	-0.90 [-1.08, -0.72]	-
<im 2015<="" td=""><td>-1.2</td><td>2.1</td><td>122</td><td>-0.4</td><td>1.4</td><td>127</td><td>8.0%</td><td>-0.80 [-1.25, -0.35]</td><td></td></im>	-1.2	2.1	122	-0.4	1.4	127	8.0%	-0.80 [-1.25, -0.35]	
Schuster 2004	-0.53	0.4	45	0.5	0.34	81	11.4%	-1.03 [-1.17, -0.89]	+
Forres 2009	-0.1	1.22	49	0.3	1.6	41	6.3%	-0.40 [-1.00, 0.20]	
Zhang 2009	-0.18	0.46	49	0.3	0.41	45	11.1%	-0.48 [-0.66, -0.30]	-
Subtotal (95% CI)			538			594	49.5%	-0.77 [-1.02, -0.51]	◆
and the second se	= 0.06; C	hi² = 2	5.96, di	f= 5 (P +	0.000	1); l² = 1	81%		
	Z = 5.91	(P < (0.00001)					
			911			973	100.0%	-0.53 [-0.75, -0.31]	•
Heterogeneity: Tau² : Test for overall effect Total (95% CI)			211						
Test for overall effect	= 0.10; C	hi * = 7		(= 13 (P	< 0.00	001); P	= 83%		-2 -1 0 1 2

Metformin	 Metformin is not recommended for treating NASH in adult patients.
Statins & Thiazolidinediones	 Pioglitazone improves liver histology in patients with and without T2DM with biopsy-proven NASH. Therefore, it may be used to treat these patients. Risks and benefits should be discussed with each patient before starting therapy. Until further data support its safety and efficacy, pioglitazone should not be used to treat NAFLD in patients without T2DM and biopsy-proven NASH.
GLP-1 analogues & SGLT-2s	 It is premature to consider GLP-1 agonists or SGLT-2is to specifically treat liver disease in patients with NAFLD or NASH
Vitamin E	 Vitamin E (RRR-a-tocopherol) administered at a daily dose of 800 IU/day improves liver histology in nondiabetic adults with biopsy-proven NASH and therefore may be considered for this patient population. Risks and benefits should be discussed with each patient before starting therapy Until further data supporting its effectiveness become available, vitamin E is not recommended to treat NASH in diabetic patients, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis

Statin Use in Patients with Non-Alcoholic Fatty Liver Disease: a Systematic Review and Meta-Analysis


Boutari C, Anastasilakis D, Pappas P, Mantzoros C

The effect of statin on Std diff of steatosis grading



Favors statin Favors no statin

The effect of statin on Std diff on NAFLD activity score

The effect of statin on Std diff on fibrosis stage

Favors statin Favors no statin

Other studies with statins on NAFLD

Author	Year	Country	Study design	N	Type of statin (mg)	Follow -up time (mont hs)	Change from baseline
Maroni et al.	2011	ltaly	Retrospective trial	43	Atorvastatin (n=19), simvastatin (n=11), rosuvastatin (n=10), fluvastatin (n=2) lovastatin (n=1)	13	AST (IU/L) 26.33 ± 8.15>34.28 ± 31.58 (p=0.06) ALT (IU/L) 37.6 ± 14.21>44.7 ± 30.43 (p=0.1) γ-GT (IU/L) 76.39 ± 59>86.5 ± 93.33 (p=0.3)
Han et al.	2012	South Korea	RCT	189	Pitavastatin (2-4) vs Atorvastatin (10-20)	3	Changes in liver attenuation index (CTL-S) values PITA: -6.7 ± 12> -3.4 ± 9.6 (p=0.008) ATOR: -7.1 ± 10.1> -5.0 ± 9.2 (p=0.158)
Rana et al.	2016	India	RCT	98	Metformin (n=31) Rosuvastatin (n=34) Pioglitazone (n=33)	6	USG score, mean ± SD 2.35 ± 0.49>2.42 ± 0.81 (p=0.593) 2.59 ± 0.50>1.32 ± 0.47 (p<0.001) 2.45±0.51> 1.76 ± 0.71 (p<0.001)
Rinella et al.	2019	USA	RCT	66	Rosuvastatin 40mg	3	MRI-PDFF (relative liver fat content), mean (SD) up to -66.6% (17.1)

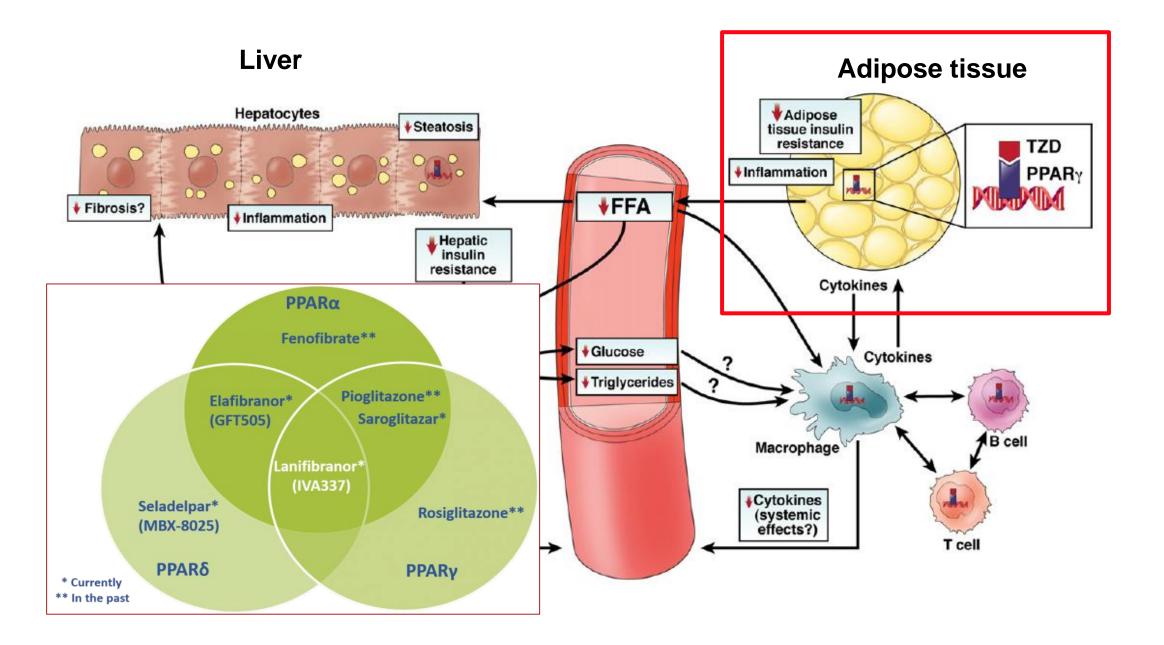
Rinella ME et al. J Hepatol, 2019. Han KH et al. J Clin Lipidol, 2012. Maroni L et al. Am J Med Sci, 2011. Rana H et al. J Clin Diagn Res, 2016. Rattanachaisit P et al. Asian Biomedicine, 2018.

➢ EDITORIAL

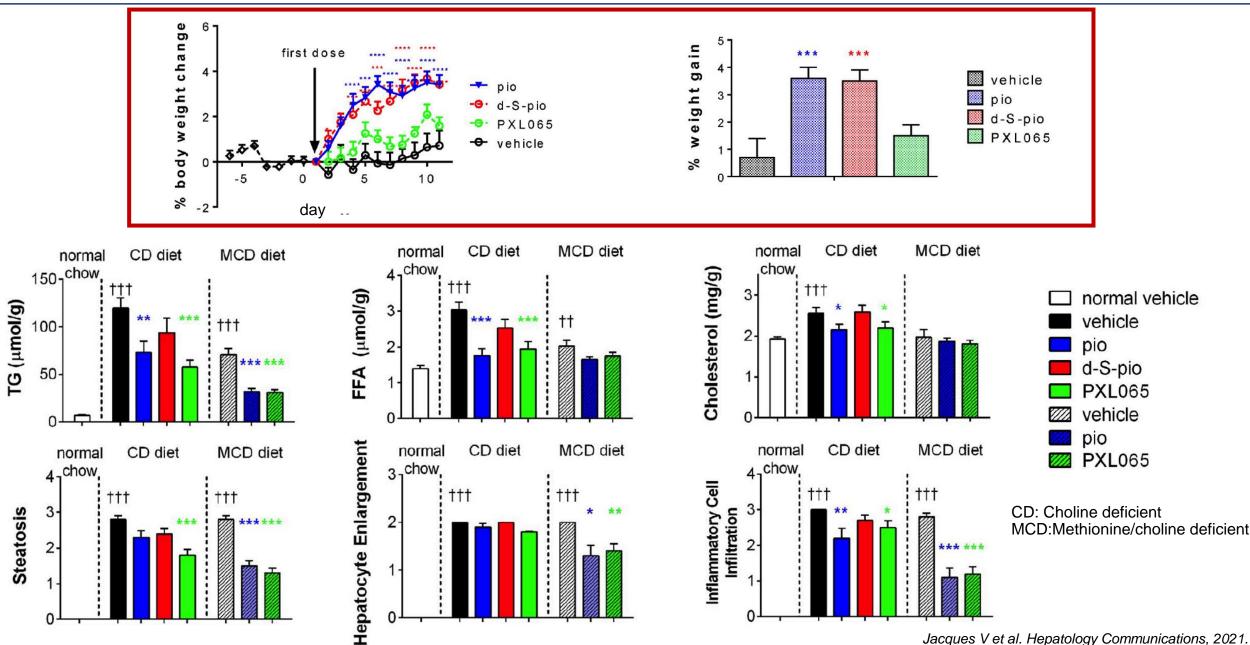
Long-term statin treatment for hepatic fibrosis in patients with nonalcoholic fatty liver disease: Is it time to give the emperor a statin robe?

Christopher M. Tessier, Stergios A. Polyzos, Vasilios G. Athyros, Christos S. Mantzoros

Published: May 11, 2021

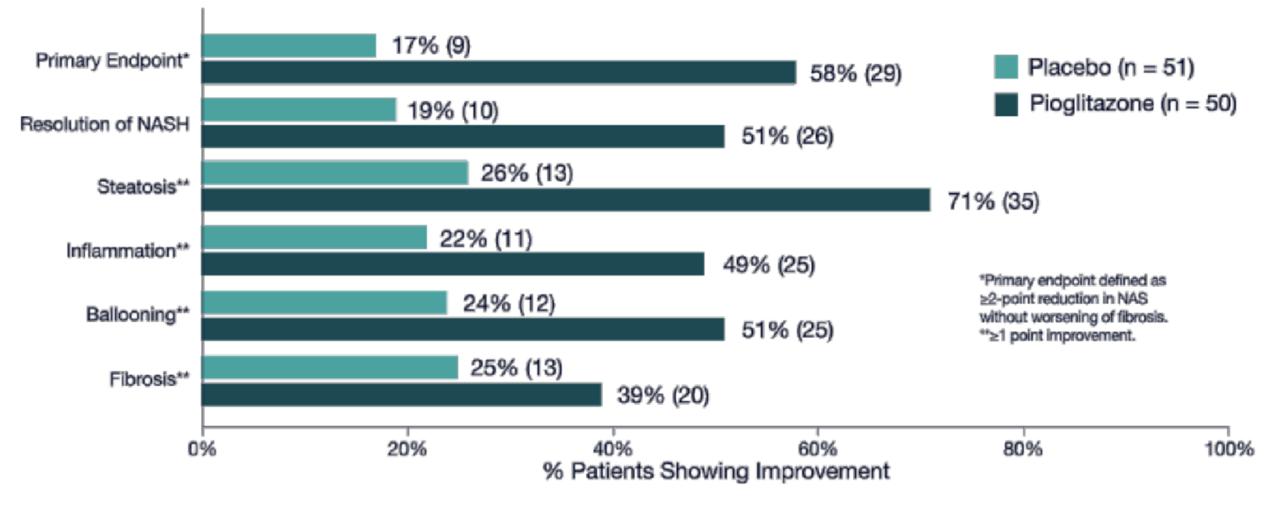

➤ CROSS-SECTIONAL STUDY

Statin use is associated with lower prevalence of advanced liver fibrosis in patients with type 2 diabetes

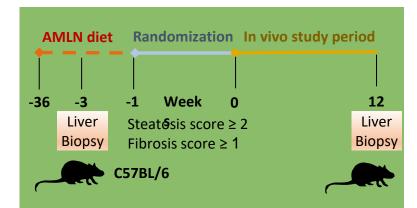

Stefano Ciardullo, Gianluca Perseghin

Metformin	 Metformin is not recommended for treating NASH in adult patients.
Statins & Thiazolidinediones	 Pioglitazone improves liver histology in patients with and without T2DM with biopsy-proven NASH. Therefore, it may be used to treat these patients. Risks and benefits should be discussed with each patient before starting therapy. Until further data support its safety and efficacy, pioglitazone should not be used to treat NAFLD in patients without T2DM and biopsy-proven NASH.
GLP-1 analogues & SGLT-2s	 It is premature to consider GLP-1 agonists or SGLT-2is to specifically treat liver disease in patients with NAFLD or NASH
Vitamin E	 Vitamin E (RRR-a-tocopherol) administered at a daily dose of 800 IU/day improves liver histology in nondiabetic adults with biopsy-proven NASH and therefore may be considered for this patient population. Risks and benefits should be discussed with each patient before starting therapy Until further data supporting its effectiveness become available, vitamin E is not recommended to treat NASH in diabetic patients, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis

Rationale for PPARs in NASH

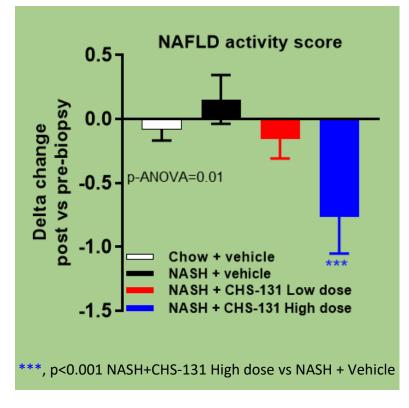


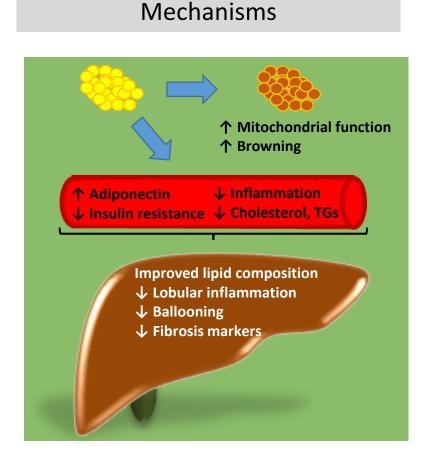
Deuterium-Stabilized (R)-Pioglitazone (PXL065) Is Responsible for Pioglitazone Efficacy in NASH yet Exhibits Little to No PPARγ Activity


Management of NASH

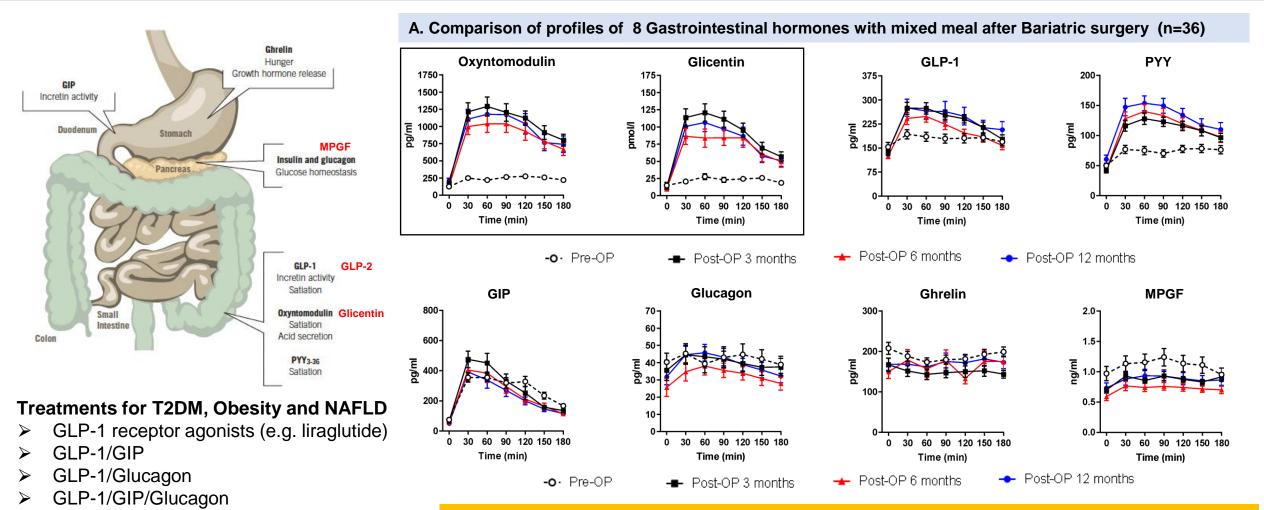
Efficacy of Pioglitazone and Vitamin E in Biopsy-Confirmed NASH

The Selective PPARγ Modulator CHS-131 Improves Liver Histopathology and Metabolism in a Mouse Model of Obesity and NASH


Experimental model



Aim: Effects of CHS-131 (SPPARM) in NAFLD


CHS-131 Low dose: 10 mg/kg CHS-131 High dose: 30 mg/kg AMLN: 40% fat with trans-fat 20% fructose, 2% cholesterol

CHS-131 improves liver histology

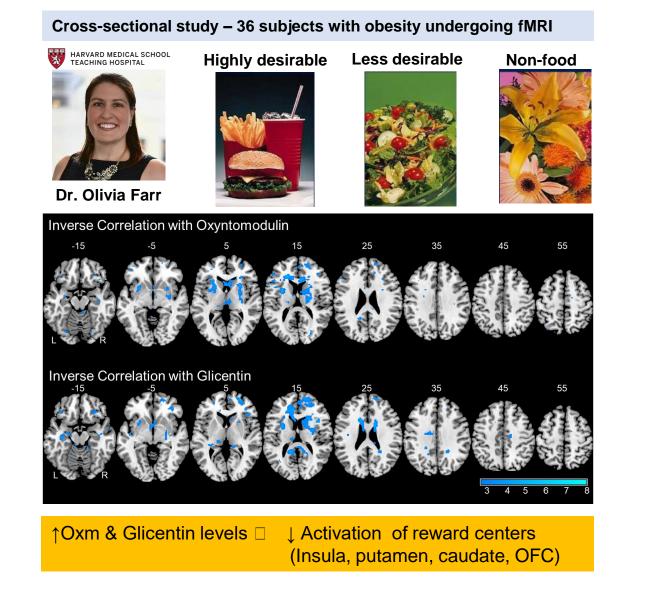
Gastrointestinal Hormones

Changes in Oxyntomodulin and Glicentin correlate strongly with satiety scores

> Changes in Oxyntomodulin and Glicentin 3 months after Op predict weight loss at 12 months

Perakakis N et al. J Clin Endocrinol Metab, 2020. Pilitsi E et al. Metabolism, 2019. Alford S. Obes Ver, 2018. Upadhyay J*, Polyzos S*, Perakakis N* et al. Metabolism, 2018.*equal contribution

Oxyntomodulin


GLP-1/Oxyntomodulin/PYY

 \succ

 \triangleright

Perakakis N ... Mantzoros C. Metabolism, 2019. * confirmed by Nielsen et al. J Clin Endocrinol Metab, 2020.

Gastrointestinal Hormones

Farr O ... Mantzoros C. Diabetologia, 2016. Perakakis N ... Mantzoros C. Diabetes Obes Metab, 2021.

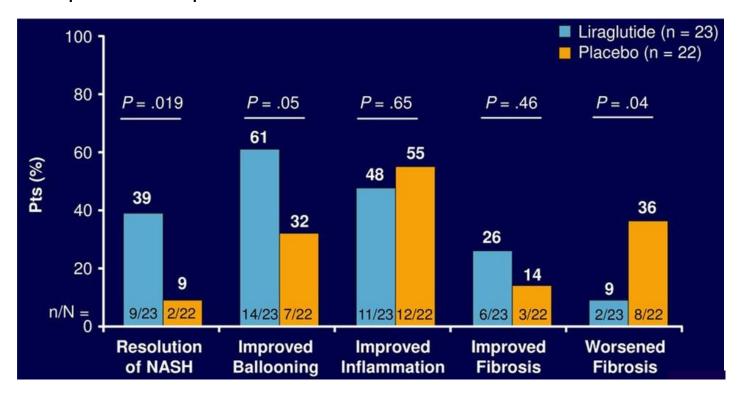
GLP-1 analogues

> Effects of liraglutide on hepatic fat change and AST levels

Changes in hepatocyte ballooning, steatosis, and lobular inflammation with liraglutide vs placebo

	Liraglutide	Placebo	Relative risks or mean changes (95% Cl) from baseline to 48 weeks (liraglutide vs placebo)	p value*
Primary outcome				
Number of patients with paired liver biopsies	23	22		
Patients with resolution of non-alcoholic steatohepatitis	9 (39%)	2 (9%)	4·3 (1·0 to 17·7)	0.019
Changes from baseline in hist	opathological p	parameters		
Total NAFLD activity score				
Change in score	-1.3 (1.6)	-0.8 (1.2)	-0.5 (-1.3 to 0.3)	0.24
Patients with improvement	17 (74%)	14 (64%)	1.2 (0.8 to 1.7)	0.46
Hepatocyte ballooning score				
Mean change	-0.5 (0.7)	-0.2 (0.6)	-0·3 (-0·7 to 0·1)	0.15
Patients with improvement	14 (61%)	7 (32%)	1·9 (1·0 to 3·8)	0.05
Steatosis				
Change in score	-0.7 (0.8)	-0.4 (0.8)	-0·2 (-0·6 to 0·2)	0.32
Patients with improvement	19 (83%)	10 (45%)	1.8 (1.1 to 3.0)	0.009
Lobular inflammation				
Change in score	-0.2 (0.6)	-0.2 (0.5)	-0.01 (-0.3 to 0.3)	0.97
Patients with improvement	11 (48%)	12 (55%)	0.9 (0.5 to 1.6)	0.65
Kleiner fibrosis stage				
Change in score	-0-2 (0-8)	0.2 (1.0)	-0·4 (-0·8 to 0·1)	0.11
Patients with improvement	6 (26%)	3 (14%)	1.9 (0.5 to 6.7)	<mark>0·46</mark> †
Patients with worsening	2 (9%)	8 (36%)	0·2 (0·1 to 1·0)	<mark>0·04</mark> †

Hepatic fat change

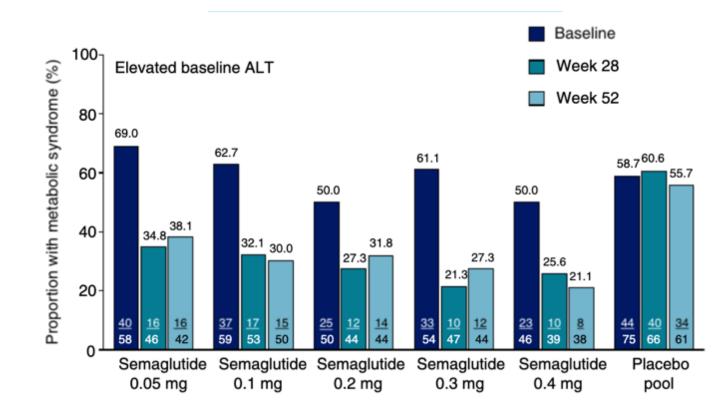

	Lira	agluti	de	PI	acebo		5	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI
Armstrong MJ 2016	-0.7	0.8	26	-0.4	0.8	26	36.1%	-0.37 [-0.92, 0.18]	-
Bajaj HS 2018	0	0	0	0	0	0		Not estimable	
Frossing \$ 2018	-1.57	0.41	44	-0.23	0.71	21	23.1%	-2.53 [-3.21, -1.84]	-
Khoo J 2017	-7.2	7.1	12	-8.9	13.4	12	16.9%	0.15 [-0.65, 0.95]	+
Smits MM 2016	-2.1	1.2	17	-1.8	0.9	17	23.8%	-0.28 [-0.95, 0.40]	-
Total (95% CI)			99			76	100.0%	-0.76 [-1.09, -0.43]	▲
Heterogeneity: Chi ² = Test for overall effect				-10 -5 0 5 10 Favours [experimental] Favours [control]					

AST change

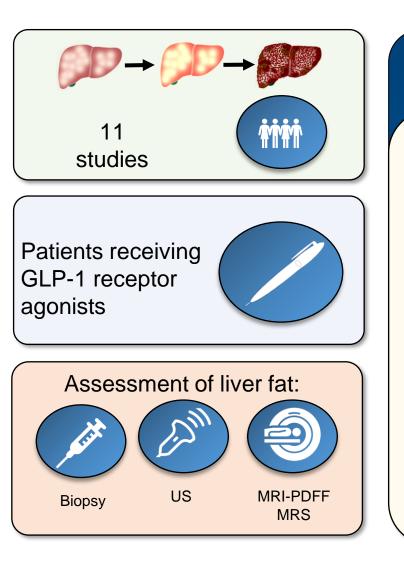
	Lira	aglutio	le	P	lacebo	,	:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Armstrong MJ 2016	-15.8	21.8	26	-8.6	28.3	26	52.9%	-0.28 [-0.83, 0.27]	+
Bajaj HS 2018	0	0	0	0	0	0		Not estimable	
Frossing \$ 2018	0	0	0	0	0	0		Not estimable	
Khoo J 2017	-18	15	12	-23	24	12	24.4%	0.24 [-0.56, 1.04]	- - -
Smits MM 2016	-1.8	0.6	17	-0.6	0.6	17	22.7%	-1.95 [-2.79, -1.12]	
Total (95% CI)			55			55	100.0%	-0.53 [-0.93, -0.14]	◆
Heterogeneity: Chi ² =	= 15.52,	df = 2	(P = 0)	.0004);	$ ^2 = 8$	7%			
Test for overall effect	z = 2.6	53 (P =	0.009))				-	-10 -5 0 5 10 Favours [experimental] Favours [control]

GLP-1 analogues

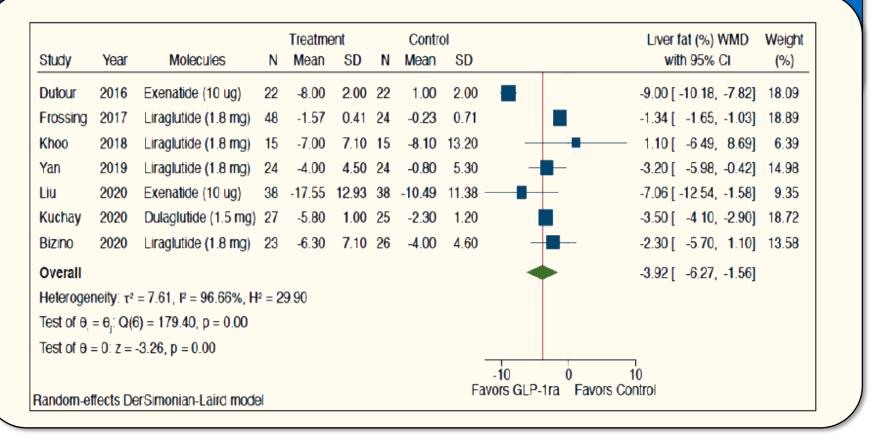
The liraglutide efficacy and action in non-alcoholic steatohepatitis (LEAN) study showed that liraglutide contributed to liver biopsy resolution of definite NASH, which occurred in 9/23 patients compared with 2/22 such patients on placebo.



Armstrong MJ et al. Lancet, 2016.


Dulaglutide, another GLP-1 RA, seems to be able to improve NAFLD in patients with T2DM, due to its potential to reduce body weight with a weekly injection.

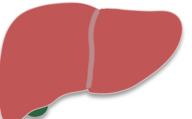
GLP-1 analogues - Semaglutide


- Data from a 104-week cardiovascular outcomes trial in type 2 diabetes (semaglutide 0.5 or 1.0 mg/week) and a 52-week weight management trial (semaglutide 0.05-0.4 mg/day) were analysed.
- > Semaglutide significantly reduced ALT and hsCRP in clinical trials in subjects with obesity and/or type 2 diabetes.
- Ongoing phase 2 clinical trial (*NCT03884075*) Non-Alcoholic Fatty Liver Disease, the Hepatic Response to Oral Glucose, and the Effect of Semaglutide (*NAFLD HEROES*)

Glucagon-Like Peptide-1 Receptor Agonists for Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: An Updated Meta-Analysis of Randomized Controlled Trials

Effects of different GLP-1RAs on liver fat content% as assessed by magnetic resonance-based techniques vs placebo or reference

Glucagon-Like Peptide-1 Receptor Agonists for Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: An Updated Meta-Analysis of Randomized Controlled Trials


	Resolution of NASH, no worsening of fibrosis									f 0.1 mg, 0.2 mg or 0.4 mg/day subcutaneously vs placebo Improvement of fibrosis, no worsening of NASH													
Study	Year	Molecules	Treat Yes	ment No							Ratio 95% CI		Weight (%)	Study	Year	Molecules		ment No				Odds Ratio with 95% CI	Weight (%)
Armstrong	2016	Liraglutide (1.8 mg)	9	14	2	20				- 6.43 [1.3	0, 34.4	41]	8.12	Armstrong	2016	Liraglutide (1.8 mg)	6	17	3	19	-		7.64
Newsome	2020	Sema (0.1 mg)	23	35	10	48		 		3.15 [1.3	3, 7.4	46]	30.85	Newsome	2020	Sema (0.1 mg)		29	19	39 -		1.98 [0.93, 4.22]	31.47
Newsome	2020	Sema (0.2 mg)	21	37	10	48 -	_			2.72 [1.	5, 6.4	48]	30.44	Newsome	2020	Sema (0.2 mg)	19	40	19	39 —	 - -	0.97 [0.45, 2.11]	29.97
Newsome	2020	Sema (0.4 mg)	33	23	10	48	_			6.89 [2.9	0, 16.	35]	30.58	Newsome	2020	Sema (0.4 mg)	24	32	19	39 —	•	1.54 [0.72, 3.30]	30.91
Overall										4.06 [2.	2, 6.	55]		Overall							•	1.50 [0.98, 2.28]	
Heterogene	ity: τ² =	0.00, I ² = 0.00%, H ² =	1.00											Heterogene	ity: τ² =	: 0.00, l ² = 0.00%, H ² =	= 1.00						
Test of $\theta_i =$	θ _i : Q(3)	= 2.87, p = 0.41												Test of θ _i =	θ _i : Q(3)	= 1.98, p = 0.58							
Test of θ =	0: z = 5.	74, p = 0.00												Test of $\theta = 0$): z = 1 .	.86, p = 0.06							
						-	2	4 8	16	- 32										0.5 1	2 4	8	
Random-effe	andom-effects DerSimonian-Laird model Odds ratio for resolution of NASH								Random-effe	cts Der	Simonian-Laird mode	I			Odds ratio for im	nprovement in liver fibro	sis stage						

Mantovani A et al. Metabolites, 2021.

First Liver-Specific Metabolomics and Lipidomics

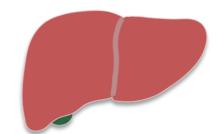
Liraglutide

- ↓BW
- ↑Insulin secretion
- ↑Insulin sensitivity

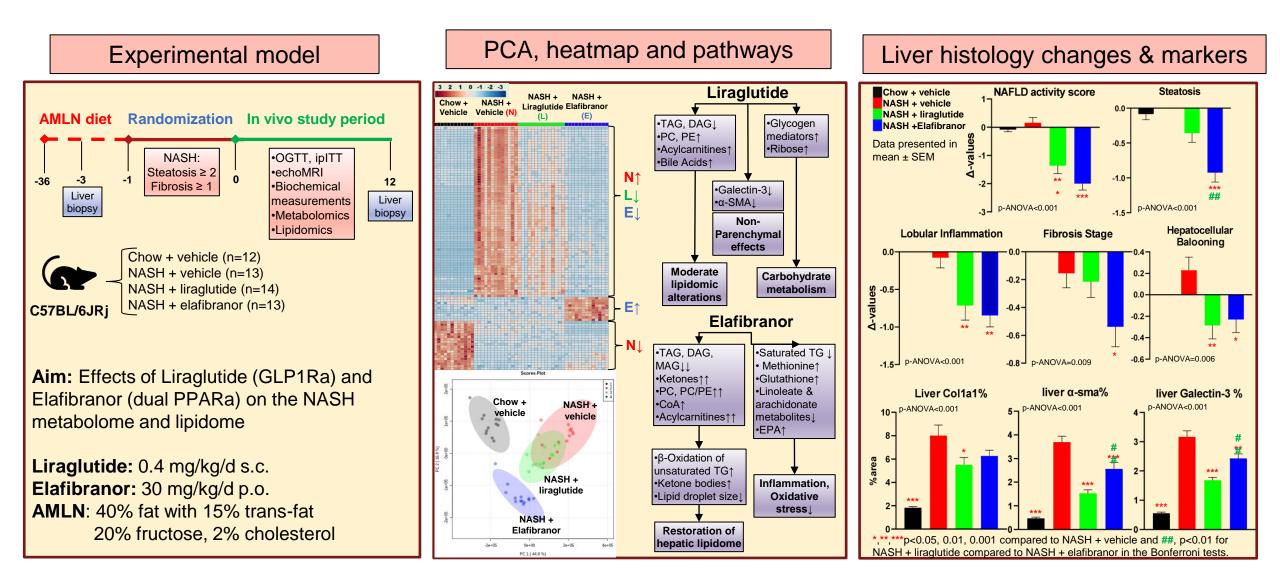
GLP-1

receptor

agonist


• ↓Hepatic glucose production

- Histological resolution of NASH (to a lesser extent in humans)
- Phase 3 trials ongoing

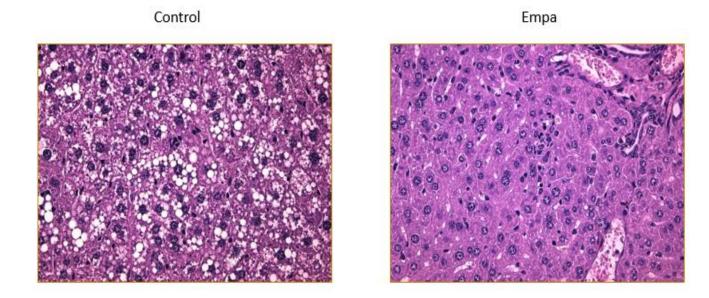

Elafibranor

 Peroxisome proliferation & gene expression activation

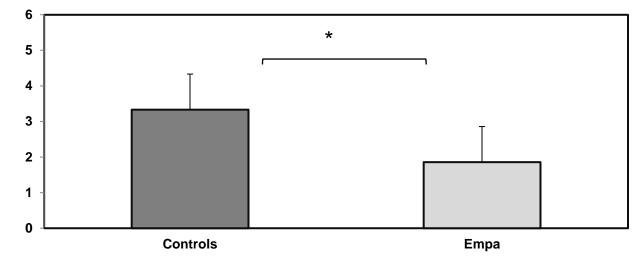
- ↑Fatty acid uptake, binding, transportation and oxidation
- ↓Liver injury

- **MMM**
- Histological resolution of NASH and fibrosis
- Phase 3 trial unsuccessful

Elafibranor and Liraglutide Differentially Improve the Hepatic Lipidome and Metabolome in a Biopsy-Proven Mouse Model of NASH

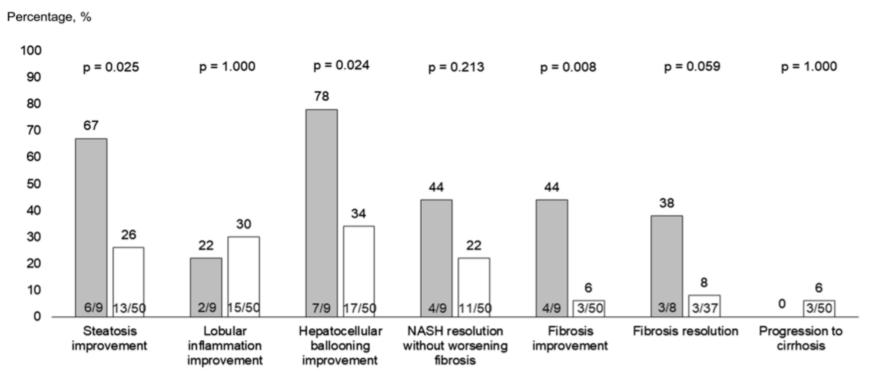

Perakakis N ... Mantzoros C. Liver International, 2021.

Metformin	 Metformin is not recommended for treating NASH in adult patients.
Statins & Thiazolidinediones	 Pioglitazone improves liver histology in patients with and without T2DM with biopsy-proven NASH. Therefore, it may be used to treat these patients. Risks and benefits should be discussed with each patient before starting therapy. Until further data support its safety and efficacy, pioglitazone should not be used to treat NAFLD in patients without T2DM and biopsy-proven NASH.
GLP-1 analogues & SGLT-2s	 It is premature to consider GLP-1 agonists or SGLT-2is to specifically treat liver disease in patients with NAFLD or NASH
Vitamin E	 Vitamin E (RRR-a-tocopherol) administered at a daily dose of 800 IU/day improves liver histology in nondiabetic adults with biopsy-proven NASH and therefore may be considered for this patient population. Risks and benefits should be discussed with each patient before starting therapy Until further data supporting its effectiveness become available, vitamin E is not recommended to treat NASH in diabetic patients, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis


Sodium-Glucose Contrasporter-2 Inhibitors for Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials

			F-2 inhib			Contro								Liver Fat (%) WMD	Weight
Study	Year	N	Mean	SD	Ν	Mean	SD	Molecules	;					with 95% CI	(%)
Bolinder	2012	37	- 2.85	6.08	42	-1.33	4.29	Dapa						1.52 [-3.87, 0.83]	5.83
Eriksson	2018	21	-2.23	3.30	21	-0.60	1.86	Dapa			-		_	-1.63 [-3.25, -0.01]	12.26
Kuchay	2018	25	-4.90	6.32	2 5	-0.90	7.02	Empa	_		•		-	-4.00 [-7.70, -0.30]	2.35
Latva-Rasku	2019	15	-3.70	0.20	16	0	9.15	Dapa			•			3.70 [-8.19, 0.79]	1.60
Cusi	2019	26	-3.80	4.80	30	-1.80	5.10	Cana				-		-2.00 [-4.60, 0.60]	4.78
Johansson	2020	46	-4.40	6.78	36	-0.80	8.45	Dapa			-		_	-3.60 [-6.99, -0.21]	2.81
Kahl	2020	42	-3.00	1.00	42	-1.00	2.00	Empa				+		-2.00 [-2.68, -1.32]	70.38
Overall												•		-2.05 [-2.61, -1.48]	
Heterogeneity	$\tau^2 = 0.0$	00, l² =	= 0.00%,	H² = '	1.00										
Test of $\theta_i = \theta_j$:	Q(6) =	2.87, p	0 = 0.83												
Test of $\theta = 0$:	z = - 7.07	7, p =	0.00												
Total (n)		212		:	212				-8	-6	-4	-2	0	_	
Random-effects	s DerSin	noniar	-Laird m	odel						Favors S	GLT-2 in	hibitors		Favors Controls	

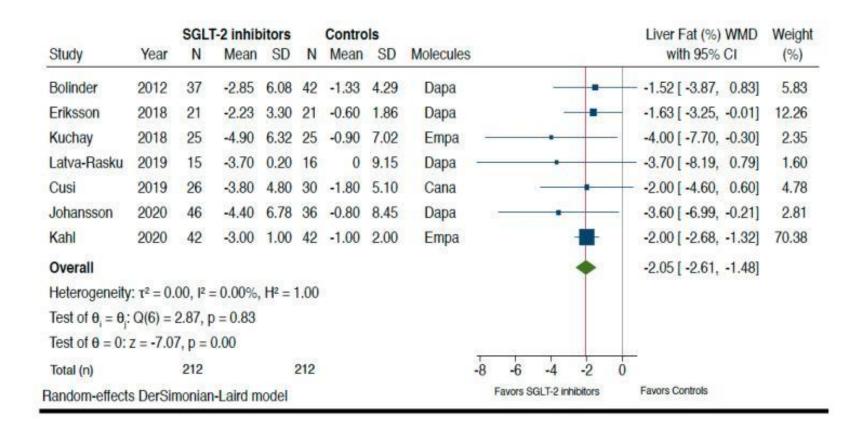
Sodium-Glucose Co-Transporter-2 Inhibitors (SGLT2i)

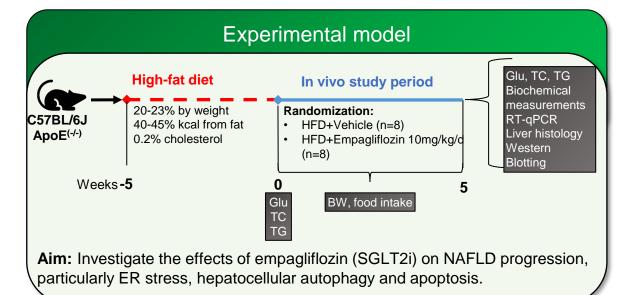


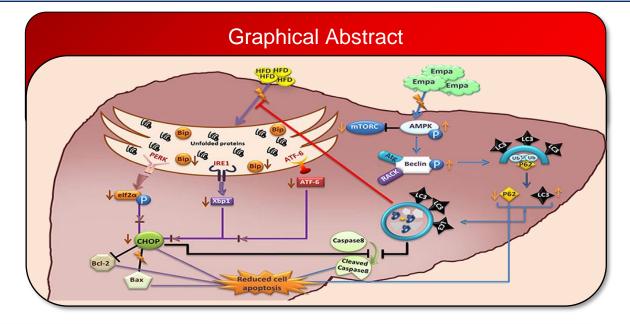
NA Score

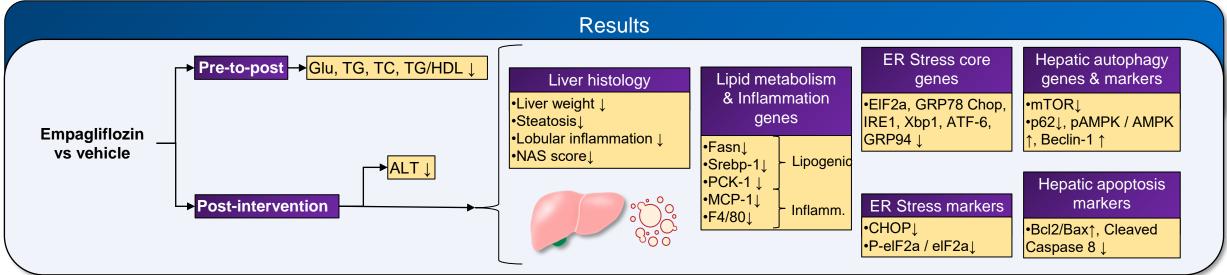
Sodium-Glucose Co-Transporter-2 Inhibitors (SGLT2i)

- There is primary histological evidence that empagliflozin, a SGLT2i, can significantly decrease the liver fat fraction, steatosis, ballooning and fibrosis.
- Moreover, SGLT2i treatment improved glycaemic control but also reduced liver fat mass in patients with NAFLD and T2DM in another study. Body weight loss was mainly attributable to the reduction in fat mass, particularly in visceral fat.

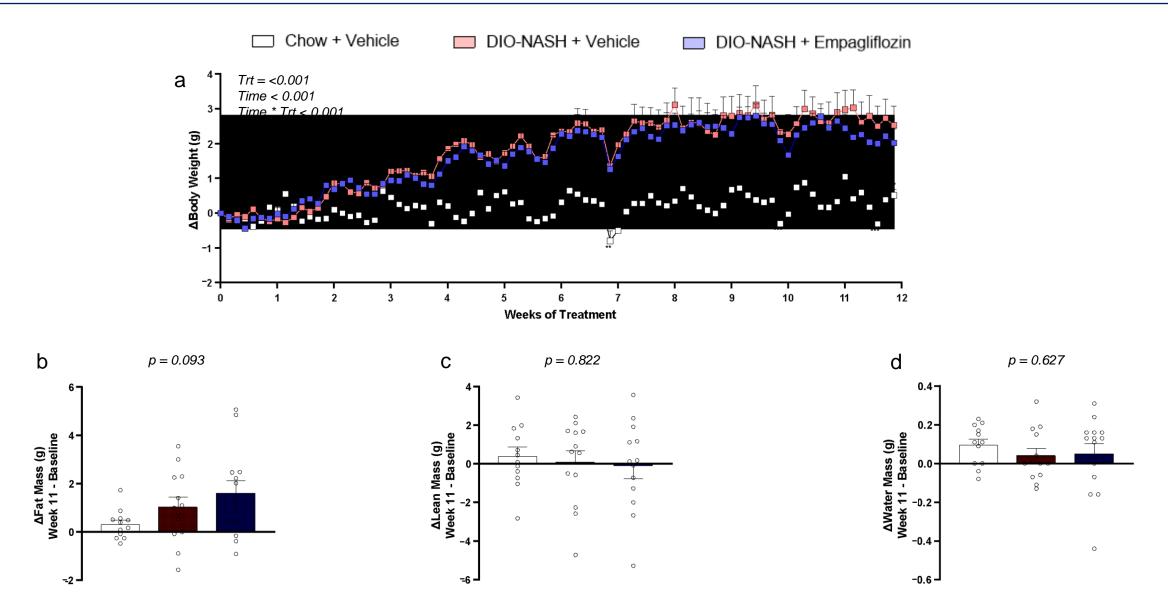

Empaglifozin Delacebo

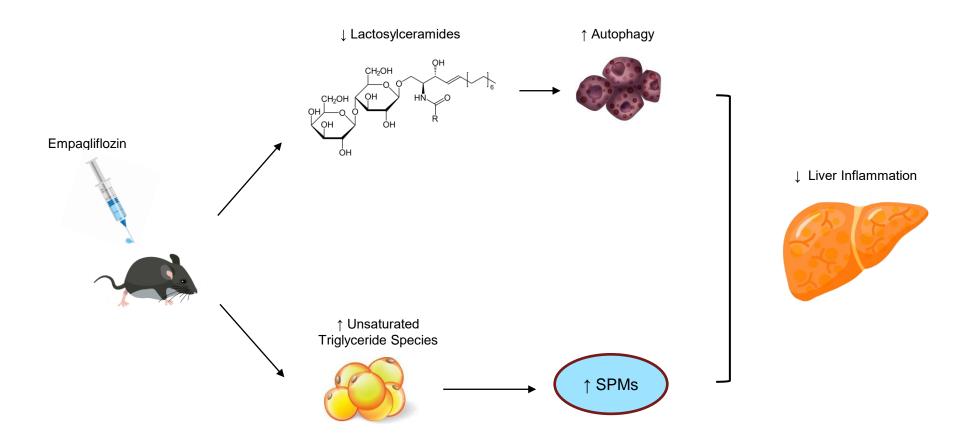



Review Sodium-Glucose Cotransporter-2 Inhibitors for Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials


Alessandro Mantovani, Graziana Petracca, Alessandro Csermely, Giorgia Beatrice and Giovanni Targher *10

Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE(-/-) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis

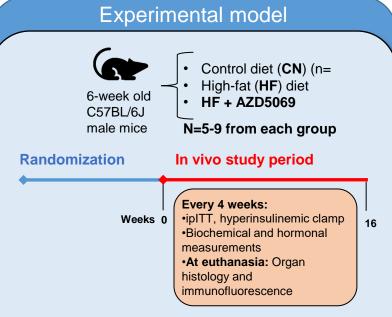



Nasiri-Ansari et al. Int J Mol Sci, 2021.

Empagliflozin Improves Metabolic and Hepatic Outcomes in a Non-Diabetic Obese Biopsy-Proven Mouse Model of Advanced NASH

Perakakis N ... Mantzoros C. Int J Mol Sci, 2021.

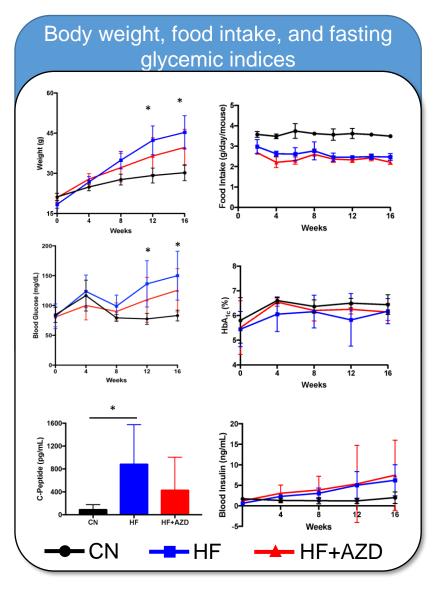
Empagliflozin Improves Metabolic and Hepatic Outcomes in a Non-Diabetic Obese Biopsy-Proven Mouse Model of Advanced NASH

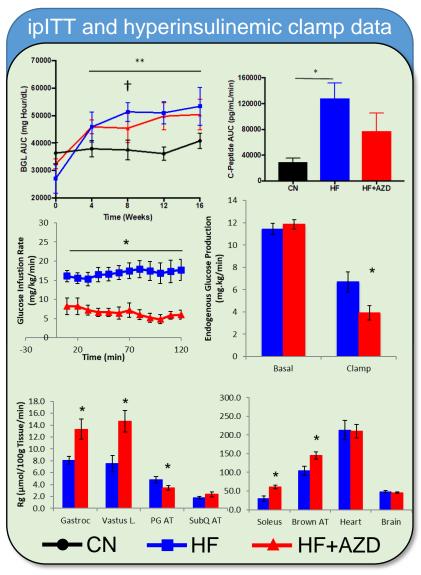


Investigational Pharmacotherapies

- ➢ More than 60 phase 2 trials are planned or ongoing
- > Cenicrivoric, elafibranor, obeticholic acid, and selonsertib are in phase 3 trials
- Selective PPRgamma Modulators (SPARMs) that may provide same or better efficacy than pioglitazone but with fewer side effects are also in development.
- > Specific thyroid receptor activators are also in development.

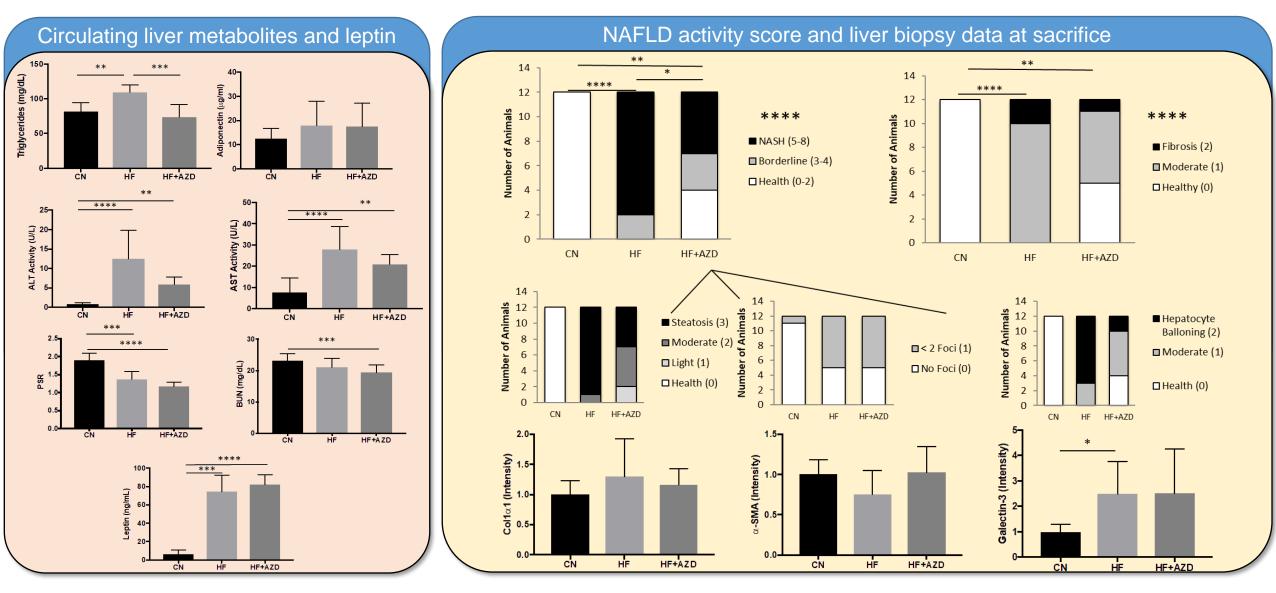
Improvement in insulin sensitivity and prevention of high fat diet-induced liver pathology using AZD5069, a CXCR2 antagonist

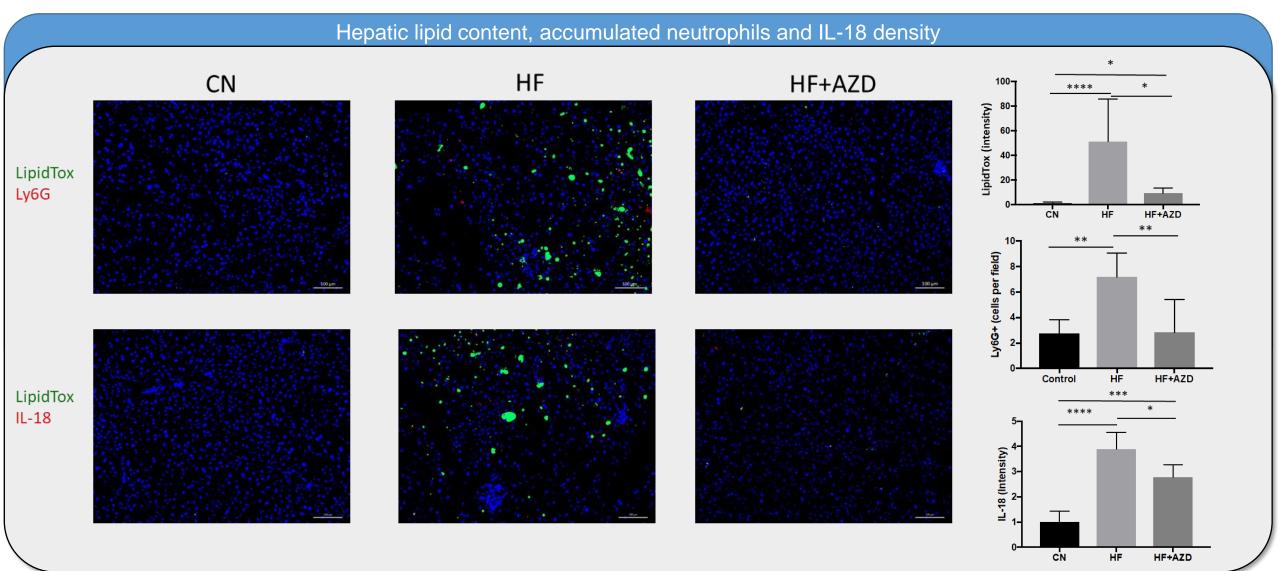

Phillips BE, Lantier L, Engman C, Garciafigueroa Y, Singhi A, Trucco M, Mantzoros C, Wasserman D, and Giannoukakis N.



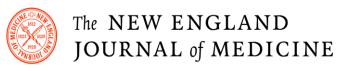
Aim: To test the capabilities of CXCR2 antagonist AZD5069 (modulator of neutrophil accumulation) in improving glycemia, insulin sensitivity and preventing the progression towards liver pathology reminiscent of NAFLD/NASH in a murine model.

CN: 13% kcal fat **HF**: 60% kcal fat **AZD5069**: 593.8 mg/4057 kcal




Improvement in insulin sensitivity and prevention of high fat diet-induced liver pathology using AZD5069, a CXCR2 antagonist

Phillips BE, Lantier L, Engman C, Garciafigueroa Y, Singhi A, Trucco M, Mantzoros C, Wasserman D, and Giannoukakis N.



Improvement in insulin sensitivity and prevention of high fat diet-induced liver pathology using AZD5069, a CXCR2 antagonist

Phillips BE, Lantier L, Engman C, Garciafigueroa Y, Singhi A, Trucco M, Mantzoros C, Wasserman D, and Giannoukakis N.

A Randomized, Controlled Trial of the Pan-PPAR Agonist Lanifibranor in NASH

A Paga		NIFIBRANOR 1200 mg	
	Adverse Eve	nts	
	Lanifibranor 1200 mg	Lanifibranor 800 mg number (percent)	Placebo
ere adverse events	3 (4)	3 (4)	3 (4)
t frequent adverse events			
Diarrhea	10 (12)	8 (10)	1 (1)
Nausea	7 (8)	8 (10)	3 (4)
Weight gain	7 (8)	8 (10)	0

Seve

Most

The pan-PPAR agonist lanifibranor, at a dose of 1200 mg daily, improved histologic outcomes in patients with noncirrhotic, highly active NASH.

End Point	Placebo	Lanifibranor ents with response	Risk Ratio (95% CI)	P Value
Primary end point: reduction of ≥2 points in SAF-A score and no worsening of fibrosis				
Lanifibranor, 800 mg	33	48	1.45 (1.00–2.1	0) 0.07
Lanifibranor, 1200 mg	33	55	1.69 (1.22–2.3	4) 0.007
Secondary end point: resolution of NASH without worsening of fibrosis				
Lanifibranor, 800 mg	22	39	1.70 (1.07–2.7	1)
Lanifibranor, 1200 mg	22	49	2.20 (1.49–3.2	5)
Secondary end point: improvement in fibrosis stage of ≥1 without worsening of NASH				
Lanifibranor, 800 mg	29	34	1.15 (0.72–1.8	5)
Lanifibranor, 1200 mg	29	48	1.68 (1.15–2.4	5)
Composite secondary end point: resolution of NASH and improvement in fibrosis stage of ≥1				
Lanifibranor, 800 mg	9	25	● 2.57 (1.20–5.5	l)
Lanifibranor, 1200 mg	9	35		5)
		Placebo Bett	er Lanifibranor Better	

Decrease of \geq 2 Points in SAF-A Score and No Worsening of Fibrosis

	Lanifibranor	Placebo	Risk Ratio (95%CI)	P Value
Lanifibranor, 800 mg	48%	33%	1.45 (1.00–2.10)	P=0.07
Lanifibranor, 1200 mg	55%	33%	1.69 (1.22–2.34)	P=0.007

Sanyal AJ et al. NEJM 2021

Leptin

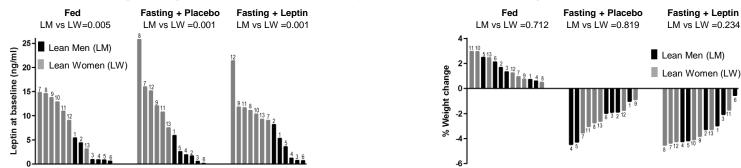
Stu	udy 1: RCT c	ross-over	study of	f lean subj	ects i	n fed stat	e and	during	72h- fas	ting treated wit	h placebo or leptin			
				Weig	pht-mair	ntaining diet]					
	Fed	Day 0	Day 1	Day	2	Day 3		Day 4						
	Fasting			Placebo or Leptin		Placebo or	Leptin	Placebo	or Leptin	Placebo or Leptin				
	i asting	Da	y 0	Day 1		Day 2		Da	ay 3	Day 4				
Stı	Study 2: Pharmacokinetic study (3 leptin doses) in lean and obese during fasting and fed state													
	Fed			ptin A / B / C										
		Day 0	Da	ay 1										
		-				. 1				1				
	Fasting		D	Leptin ose A / B / C		_eptin e A / B / C			Lept / Dose A					
		Day 0		Day 1	[Day 2	Da	ay 3	Day	4				
Stı	udy 3: Open-	label leptir	n replac Month		•	f emales w onth 3	ith ch	ronic m	nild hypo	oleptinemia ove	r 3 months			
	Baseline Duration: 30		Metre	leptin	Met	treleptin ng/kg/day								
	Duration. 30	→ —	0.08mg	/kg/day	0.211		•							
C (-						uith ak		:l al las ma a						
Sti	uay 4: RCT v	vith leptin r	epiacer	nent in ter	ales	with chro	nic m	lia nypo	pieptiner	nia over 12 mor	ITINS			
M	12 mc etreleptin 0.08mg		ebo	4 months foll (no treatme	•									

Dr. Perakakis

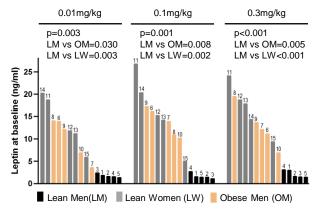
P. Chrysafi

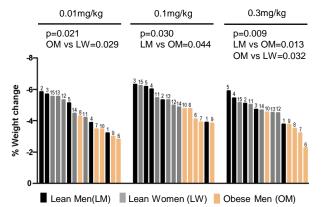
Dr. Farr

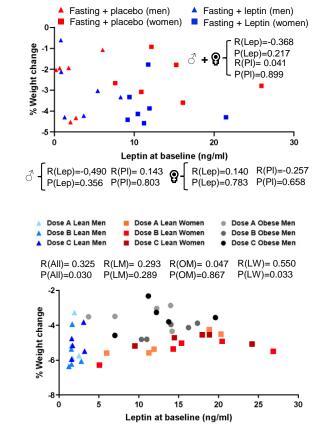
K. Stefanakis

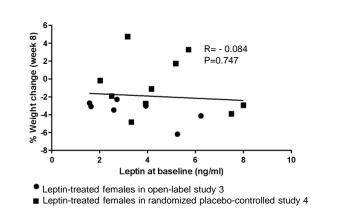

Dr. Peradze

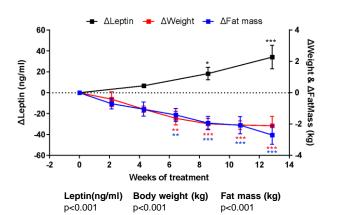
Dr. Sala-Vila

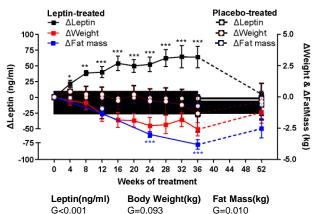



Dr. Chan Chrysafi P*, Perakakis N* ... Mantzoros C. Nature Communications, 2020. * equal contribution


a. Correlation of % weight change with leptin at baseline in study 1 (72h-fed untreated or fasting treated with leptin or placebo)


b. Correlation of % weight change with leptin at baseline in study 2 (72h-fasting treated with escalating leptin doses)



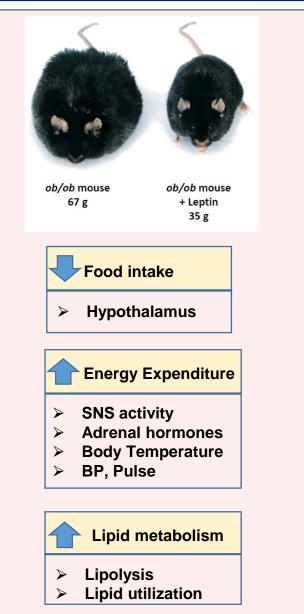


c. Correlation of % weight change with leptin at baseline and weight and fat mass changes in relation to leptin in studies 3 and 4 (Long-term leptin treatment)

T<0.001

G*T=0.059

T<0.001


G*T<0.001

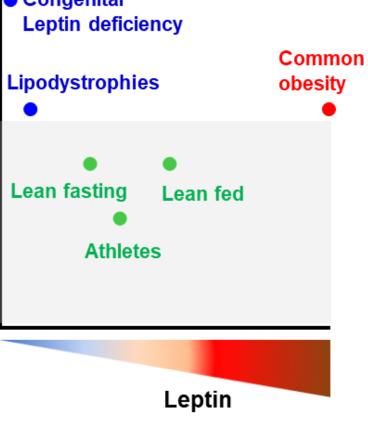
T<0.001

G*T<0.001

Chrysafi P*, Perakakis N* ... Mantzoros C. Nature Communications, 2020. * equal contribution

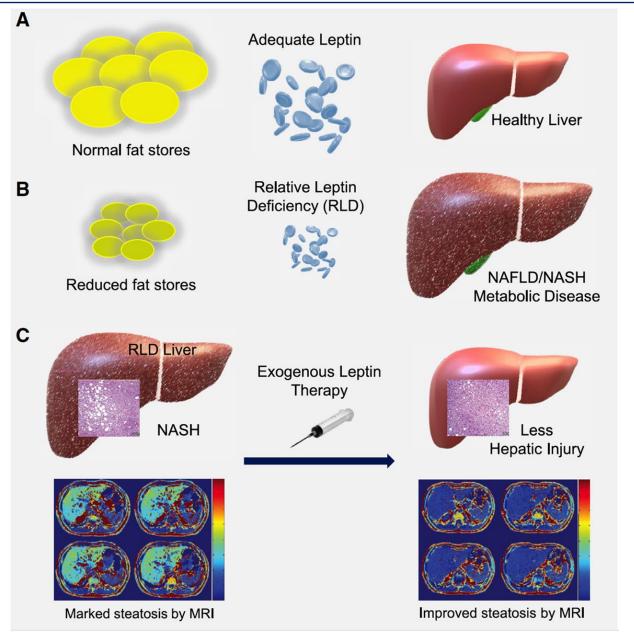
Leptin

Perakakis, Farr, Mantzoros JACC State-of-the art review (02/2021)

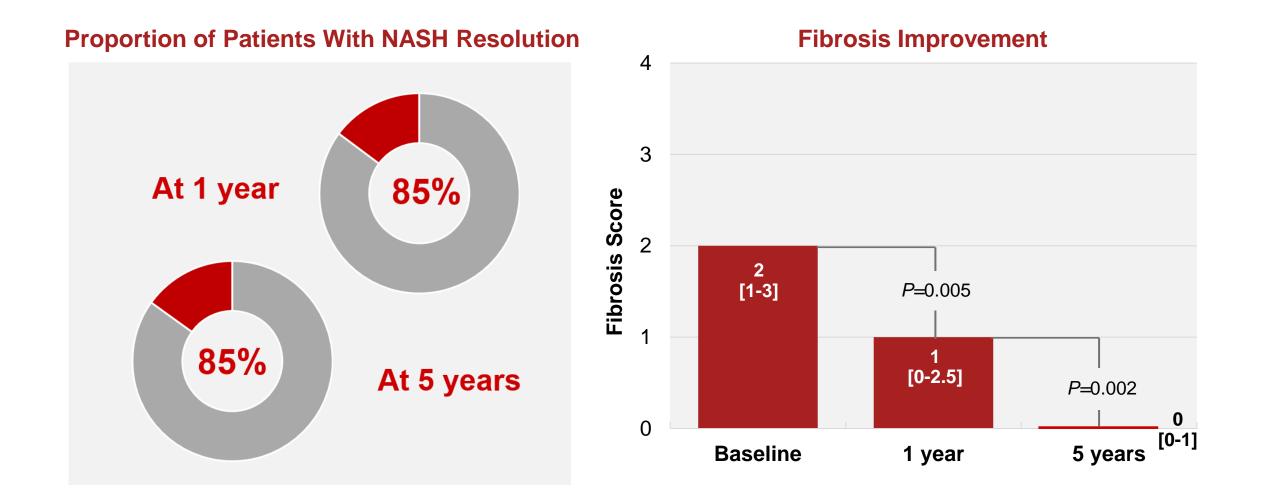

Congenital Leptin	Deficiency
- Leptin	+ Leptin
3yr old weighing 42 kg	7yr old weighing 32 kg
Farooqi Set al. J El	ndocrinol, 2014.
Lipodyst	rophy
	educed subcutaneous fat (red) creased visceral fat (yellow)

Congenital

Visceral Fat


Р

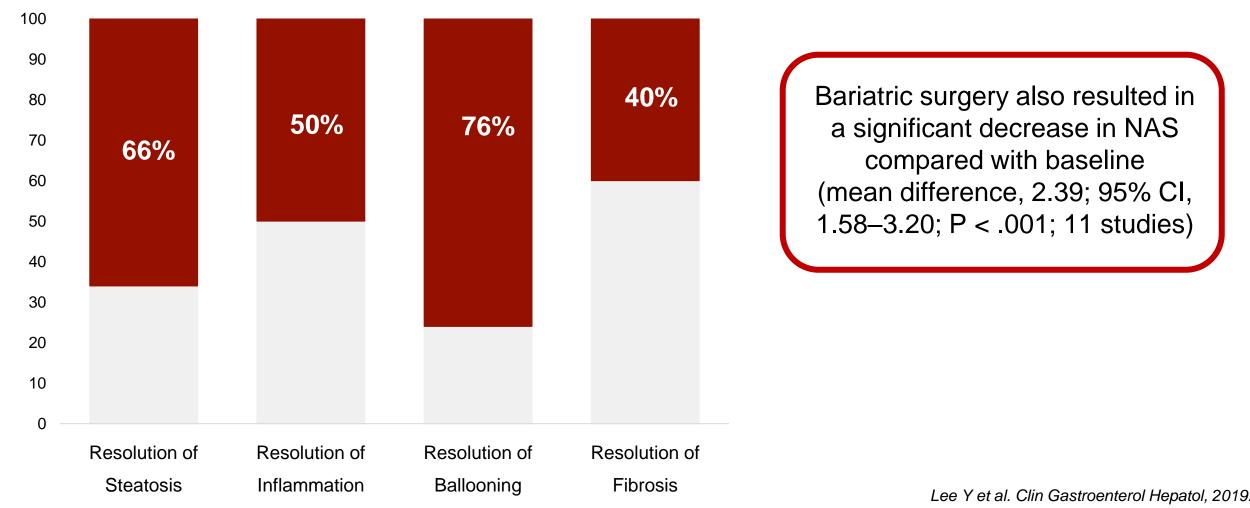
BMI


Parker et al. Eur J Endocrinol, 2013.

Metreleptin Therapy for NASH: Open Label Interventions in Two Different Clinical Settings

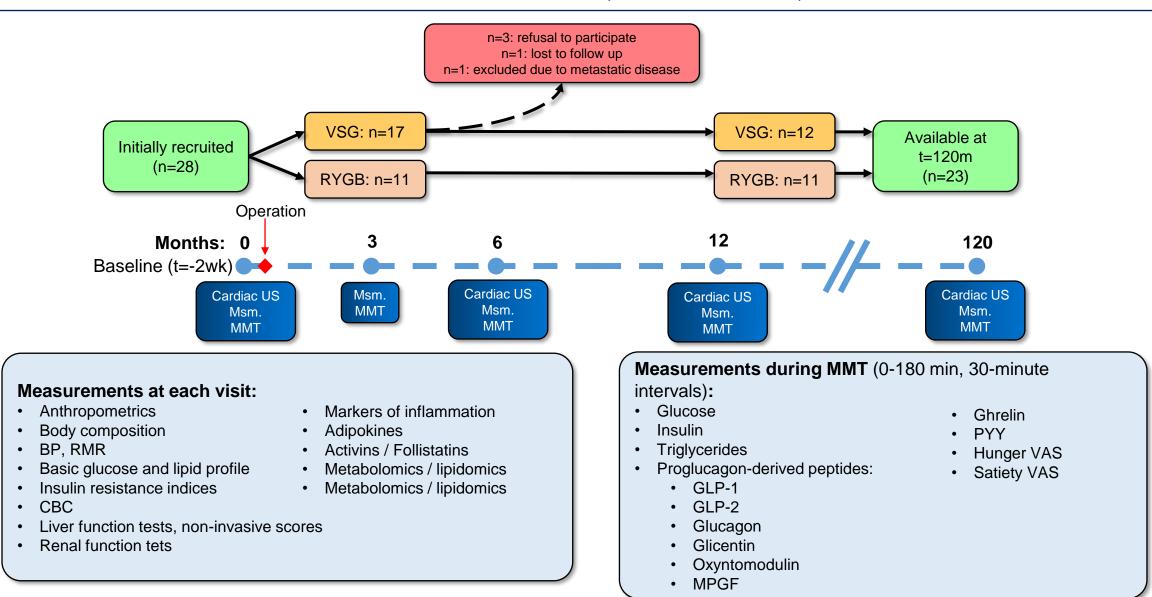
Akinci B et al. Med, 2021.

Bariatric Surgery Improved NASH and Fibrosis in one Long-Term Study

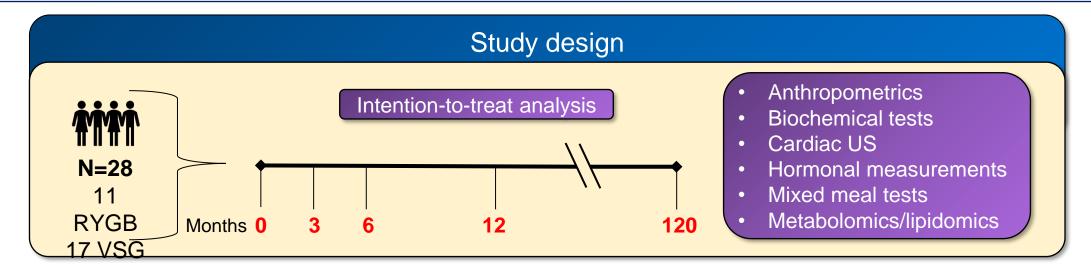


Total subjects N=190, results using paired biopsies

Complete Resolution of Nonalcoholic Fatty Liver Disease After Bariatric Surgery: A Systematic Review and Meta-analysis


- > 32 cohort studies: 3093 liver biopsies at baseline and 2649 biopsies at follow-up evaluation (85.65% follow-up rate).
- ➤ Median follow-up period of 15 months (range, 3–55 mo)

Resolution of histopathologic features in % of patients


Long-Term Beneficial Effects of Bariatric Surgery on Cardiometabolic Risk and Exploration of Underlying Mechanisms

Kokkinos A., ... Mantzoros C. (submitted to NEJM)

Long-Term Beneficial Effects of Bariatric Surgery on Cardiometabolic Risk and Exploration of Underlying Mechanisms

Kokkinos A., ... Mantzoros C. (submitted to NEJM)

		Main end	points (all pa	tients)		
	Baseline	3 months	6 months	12 months	10 years	p-ANOVA
Body weight (kg)	138.9 ± 21	114.5 ± 17.3***	100.9 ± 17*** ^{†††}	90.6 ± 17.1*** ^{†††§§§}	105.8 ± 25.4*** ^{‡‡‡}	Time<0.001
BMI (kg/m ²)	49.6 ± 6.8	41 ± 6.2***	36.5 ± 5.7*** ^{†††}	32.8 ± 6.2*** ^{†††§§§}	37.6 ± 8.7*** ^{‡‡‡}	Time<0.001
Fat mass %	49.8 ± 8.2	43.9 ± 7.2***	38.1 ± 9.4*** ^{†††}	35.4 ± 8.9*** ^{†††}	38.3 ± 11.5***	Time<0.001
Lean Mass %	50.2 ± 8.2	55.1 ± 6*	61.9 ± 9.4*** ^{†††}	64.6 ± 8.9*** ^{†††}	61.7 ± 11.5***	Time<0.001
Waist circumference (cm)	128.1 ± 12.7	112.9 ± 13.4***	104.6 ± 12.6*** ^{††}	96.3 ± 13*** ^{†††§§}	106.1 ± 17.4*** ^{‡‡‡}	Time<0.001
Hip circumference (cm)	143 ± 13.3	127.7 ± 14.4***	121.1 ± 11.3*** [†]	114 ± 12.3*** ^{†††§§}	125 ± 16.5*** ^{‡‡}	Time<0.001
Waist / hip ratio	0.9 ± 0.1	0.9 ± 0.1	0.9 ± 0.1	0.8 ± 0.1*	0.8 ± 0.1**	Time=0.01
RMR/energy expenditure						
(kcal/d)	2090.4 ± 330	1685.2 ± 284.1***	1594 ± 220.8***	1606.9 ± 302.3***	1683.4 ± 358.9**	Time<0.001

P-ANOVA for p of time in 2-way ANOVA. *, **, *** for p<0.05, 0.01, 0.001 vs Baseline; †, ††, ††† likewise for p-values vs 3 months, for timepoints after 3 months; §, §§, §§§ likewise for p-values vs 6 months, for timepoints after 6 months; ‡, ‡‡, ‡‡‡ likewise for p-values vs 12 months for the 10-year timepoint. Data presented as means ± SD.

Long-Term Beneficial Effects of Bariatric Surgery on Cardiometabolic Risk and Exploration of Underlying Mechanisms

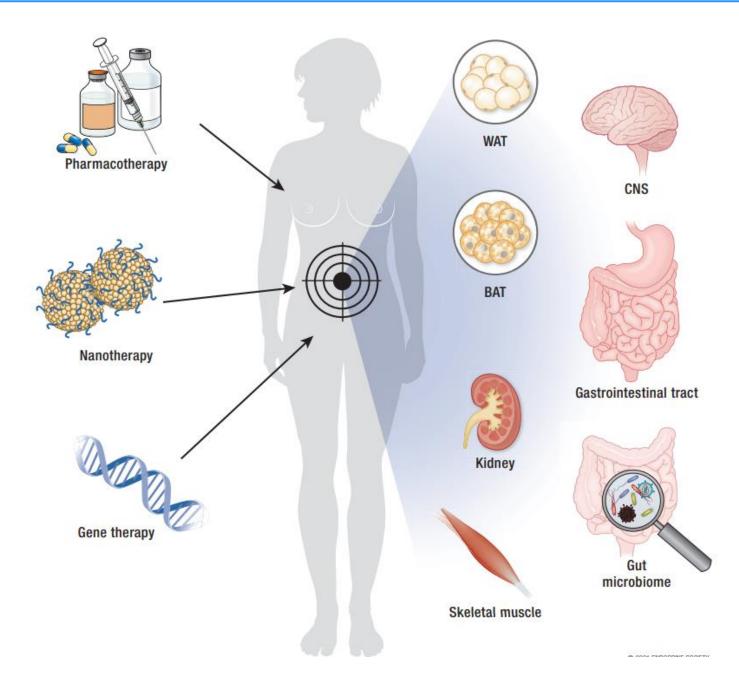
Clinical outcomes (all patients)

	Baseline	3 months	6 months	12 months	10 years	p-ANOVA
Basic Metabolic panel						
Fasting plasma glucose (mg/dL)	109.7 ± 30.3	89.1 ± 14.6*	92.1 ± 8.5**	90.4 ± 7.1*	92.9 ± 7.2*	Time<0.001
Fasting plasma insulin (mIU/L)	21.1 ± 6.2	9.8 ± 3.4***	9.3 ± 4.3***	7.5 ± 4.8***	8.7 ± 5.1***	Time<0.001
Fasting plasma triglycerides (mg/dL)	107.6 ± 39.4	104.1 ± 20	89.1 ± 25.9 [†]	82.5 ± 20 ^{†††}	61.3 ± 30.9*** ^{†††§§‡}	Time<0.001
Total Cholesterol (mg/dL)	186.1 ± 27.3	178.8 ± 35	176 ± 39.2	170.3 ± 25.1	161.5 ± 25.4*	Time<0.001
HDL cholesterol (mg/dL)	41.6 ± 5.9	41.3 ± 6.1	41.8 ± 5.8	41.2 ± 4.2	51.3 ± 11.9** ^{†§‡‡}	Time=0.04
LDL cholesterol (mg/dL)	126.1 ± 28	116.6 ± 33.8	116.4 ± 39.3	113.5 ± 23.1	96.8 ± 23.1**	Time<0.001
HOMA-IR	4.8 ± 1.5	2.3 ± 0.9***	2.1 ± 1***	1.6 ± 1.1***	2 ± 1.2***	Time=0.01
Liver Function tests						
AST (IU/L)	19.4 ± 5.5	18.2 ± 4.3	14.9 ± 5*†	17.7 ± 8.1	17.2 ± 4	Time=0.07
ALT (IU/L)	25.3 ± 10.7	18 ± 7.1*	15.5 ± 11*	18.3 ± 9.5	14.9 ± 4.5** ^{‡‡}	Time=0.004
ALP (IU/L)	170.9 ± 67.4	150.8 ± 60.1	162.4 ± 52.9	150.8 ± 68.5	70.4 ± 18.9*** ^{††§§§‡}	Time<0.001
γGT (IU/L)	24.1 ± 10	13.5 ± 5.6**	13.4 ± 6.6**	16.9 ± 11.4	10.7 ± 4.3***	Time<0.001
Renal, inflammation and gut microbiota ma	arkers					
eGFR (CKD-Epi)	103.1 ± 11.9	110.1 ± 7.2	108.3 ± 8.9	112.3 ± 4.6	101.3 ± 8.6 ^{†‡‡}	Time=0.11
CRP (mg/dL)	10 ± 9.8	8.4 ± 10.1	6.3 ± 7.7	3.2 ± 3.3*** ^{††}	6.5 ± 3.2	Time<0.001
GlycA (μmol/L)	468.2 ± 59.1	441.5 ± 68.7	418 ± 72.8**	392.3 ± 67.6**	395.7 ± 56.9**	Time<0.001
TMAO (μmol/L)	1.99 ± 1.23	2.55 ± 2.55	2.91 ± 3.98	2.8 ± 2.7	4.27 ± 4.32	Time=0.005
Data from CBC						
Neutrophils (10 ³)	5.3 ± 1.7	3.6 ± 1.2***	3.6 ± 1.4***	3.5 ± 1.5*	3.5 ± 1.3***	Time<0.001
Lymphocytes (10 ³)	2.2 ± 0.6	1.9 ± 0.4	1.8 ± 0.5	1.9 ± 0.3	$1.6 \pm 0.4^{**\dagger \ddagger}$	Time<0.01
		Baseline	6 months	12 months	10 years	p-ANOVA
Cardiac US						
Left ventricular end systolic diameter (r	mm)	35.4 ± 2.8	33.4 ± 2.4***	32.4 ± 2.4*** ^{§§§}	30.3 ± 3.1** ^{§§‡}	Time<0.001
Left ventricular end diastolic diameter ((mm)	54 ± 2.9	52.8 ± 2.4*	51.9 ± 2.4*** ^{§§§}	48.4 ± 2.7** ^{§§§‡‡}	Time<0.001
Epicardial fat thickness (cm)		1.61 ± 0.12	1.42 ± 0.09***	1.42 ± 0.12***	1.21 ± 0.19***§§‡‡‡	Time<0.001
Ejection Fraction (%)		58.7 ± 3.5	62.6 ± 4.3**	67.1 ± 14.2*	62 ± 2.9	Time<0.01

P-ANOVA for p of time in 2-way ANOVA. *, **, *** for p<0.05, 0.01, 0.001 vs Baseline; [†], ^{††}, ^{†††} likewise for p-values vs 3 months, for timepoints after 3 months; [§], ^{§§}, ^{§§§} likewise for p-values vs 6 months, for timepoints after 6 months; [‡], ^{‡‡}, ^{‡‡‡} likewise for p-values vs 12 months for the 10-year timepoint. Data presented as means ± SD.

Long-Term Beneficial Effects of Bariatric Surgery on Cardiometabolic Risk; Exploration of Underlying Mechanisms

Peptide responses to mixed meal test and hormonal tests (all patients)


	Baseline	3 months	6 months	12 months	10 years	p-ANOVA
Basic Indices (AUC)						
Glucose (mg/dL)xmin	109.7 ± 30.3	89.1 ± 14.6*	92.1 ± 8.5**	90.4 ± 7.1*	92.9 ± 7.2*	Time<0.001
Insulin (mIU/L)xmin	21.1 ± 6.2	9.8 ± 3.4***	9.3 ± 4.3***	7.5 ± 4.8***	8.7 ± 5.1***	Time<0.001
Triglycerides (mg/dL)xmin	107.6 ± 39.4	104.1 ± 20	89.1 ± 25.9 [†]	82.5 ± 20 ^{†††}	61.3 ± 30.9*** ^{†††§§‡}	Time<0.001
Gut Peptides (AUC)						
GLP-1 (pg/mL)xmin	32485.9 ± 12179.5	42528.4 ± 11898.3	37099.2 ± 10312.2	43253.5 ± 18712.8*	52847.6 ± 12101.8*** ^{†§§§}	Time<0.001
GLP-2 (ng/mL)xmin	297.8 ± 148.1	414.3 ± 134.3**	355.9 ± 133.9	344.8 ± 101.1	406.1 ± 148.5*	Time<0.001
Glucagon (pg/mL)xmin	7621.6 ± 4895.4	7391.5 ± 4096.6	6075.5 ± 3012.3	7201.8 ± 3352	10631.8 ± 5104.8 ^{†§§‡}	Time<0.001
Oxyntomodulin(pg/mL)xmin	43854.3 ± 26505.7	188159.9 ± 89174.5***	153461 ± 82790.1***	173905.8 ± 95938.7***	191910.9 ± 112041.6***	Time<0.001
Glicentin (pg/ml)xmin	4215.5 ± 2439.2	16651.3 ± 8123.3***	12790.3 ± 7659.6***	15012.6 ± 8867.1***	12799.8 ± 6662.6***	Time<0.001
MPGF (ng/mL)xmin	207.5 ± 125.1	160 ± 54.4	131 ± 52.4*	157.8 ± 76.8	141.1 ± 63.2*	Time<0.002
Ghrelin (pmol/L)xmin	32252.8 ± 11087.6	16673.2 ± 13292.6***	18426.9 ± 16879.5*	23770.6 ± 15269.8	28446.9 ± 25403.8	Time<0.001
PYY (pmol/L)xmin	13624.7 ± 5598.6	19355.5 ± 5617.5**	20976.5 ± 7849.7**	23470.8 ± 9014.2***	22619.9 ± 9528.6***	Time<0.001
Hunger and satiety iAUC						
Hunger iAUC (VASxmin)	-81.4 ± 3597	-1596.6 ± 4900.2	-3227.4 ± 4560.8	-2069.3 ± 4059.6	-2172.4 ± 3612.7	Time=0.047
Satiety iAUC (VASxmin)	1917.9 ± 4199.6	1636.3 ± 5466	3518.1 ± 4999.5	3605.5 ± 4616.9	3390.7 ± 3742.4	Time=0.33
Adipokines and activins/follistation	ins					
Leptin (ng/mL)	89.6 ± 28.9	42.8 ± 24.7***	33.9 ± 23.2***	26.4 ± 18.9*** ^{†††}	58.3 ± 42.4* ^{§‡‡}	Time<0.001
Adiponectin (ug/mL)	9.6 ± 3.6	10.8 ± 2.9	12 ± 2.6**	13.9 ± 5**†	15.8 ± 4.4*** ^{†††§§}	Time<0.001
Adiponectin/leptin ratio	0.1 ± 0.1	$0.3 \pm 0.2^{***}$	$0.5 \pm 0.3^{**}$	0.5 ± 0.3**†††	0.3 ± 0.4§‡	Time<0.001
Activin A (pg/mL)	432.8 ± 149.7	377 ± 98.3	319.3 ± 83*†	316.7 ± 86.5*†	455.7 ± 107.3 ^{§§§‡‡‡}	Time<0.001
Activin B (pg/mL)	120.7 ± 42.6	124.1 ± 49.8	122.7 ± 54.3	123.2 ± 49.6	152.2 ± 42.1**§	Time=0.02
Activin AB (pg/mL)	5.7 ± 2.6	8.8 ± 5.2**	7.3 ± 3.8	8.9 ± 5.3	12.3 ± 4.3*** ^{§§§‡}	Time<0.001
Follistatin (ng/mL)	4.5 ± 1.3	4 ± 1.1	3.5 ± 1*	3 ± 0.9*** ^{†§}	5.6 ± 1.5 ^{++§§§‡‡‡}	Time<0.001
Follistatin-like 3 (ng/mL)	16.2 ± 4	15.1 ± 3.6	13.3 ± 2.8*** ^{†††}	14.2 ± 4.3	17.5 ± 6.8	Time=0.02

P-ANOVA for p of time in 2-way ANOVA. *, **, *** for p<0.05, 0.01, 0.001 vs Baseline; †, ††, ††† likewise for p-values vs 3 months, for timepoints after 3 months; §, §§, §§§ likewise for p-values vs 6 months, for timepoints after 6 months; ‡, ‡‡ likewise for p-values vs 12 months for the 10-year timepoint. Data presented as means ± SD.

BRAVES study focusing on the effects of surgery on NASH outcomes:

- Trial just completed enrollment and we started assessing laboratory parameters
- Make medications using these hormones alone or in combination and administer them instead of having surgery - "surgery in a pill"
 - (We have applied for funding to study the latter)

The future: Developing Potential Therapies for Metabolic Diseases

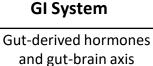
Novel Non-invasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy

Angelidi A, Belanger M, Koliaki C, Kokkinos A, Mantzoros C.

Central Nervous

System

CNC Secreted Neuropeptides and Antagonists


- Tesofesine
- Oxytocin
- NPY antagonists
- Methylphenidate
- GDF-15

Endocannabinoid System Agents

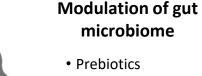
- CB1R Antagonists (rimonabant, AM251, AM6545, JD5037)
- Agents targeting GPR (GPR55, GPR18, GPR119)

Adipose tissue

- Leptin
- B3-adrenoreceptor agonists (mirabegron)
- Brown fat transplantation
- PPAR-y agonists
- Other Adipokines

- CKK
 - PYY analogues
 - OXM
 - Glicentin
 - Ghrelin
 - Secretin
 - GLP-1 agonists (exenatide, liraglutide, lixisenatide, dulaglutide, albiglutide, semaglutide)

Combinations

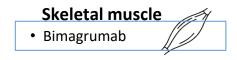

- Dual agonists (GLP-1/glucagon, GLP-1/GIP)
- Triple agonists
- (GLP-1/GIP/glucagon, GLP-1/OXM/PYY)
- Synthetic GLP-1/glucagon coagonists (Cotadutide, SAR425899)
- Synthetic GLP-1/GIP coagonists (*tirzepatide*)
- DACRAs

Other gut peptide-related approaches

- FGF21 analogues
- Bile acids

- Insulin
- Amylin analogues

- Probiotics
- Fecal microbiota transplantation



Endocrine Reviews 2021 (in press)

• SGLT2i (dapagliflozin, canagliflozin, empagliflozin, ertugliflozin)

• SGTL1/2i (sotagliflozin, licogliflozin)

Novel Drug Delivery Systems

- Oral peptide engineering (oral semaglutide)
- PHB-targeted nanotherapy
- Nanotechnology-based photothermal lipolysis
- WAT browning

Antiobesity Vaccines

 Oral immunization VLP vaccines

- Gene
- Ghrelin-targeted antiobesity vaccines

